Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SingleObjective/SymbolicRegressionSingleObjectiveProblem.cs @ 10878

Last change on this file since 10878 was 10596, checked in by mkommend, 11 years ago

#2169: Implemented solutions analyzer for symbolic regression.

File size: 6.5 KB
RevLine 
[5618]1#region License Information
2/* HeuristicLab
[9456]3 * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
[5618]4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Linq;
23using HeuristicLab.Common;
24using HeuristicLab.Core;
[5716]25using HeuristicLab.Parameters;
[5618]26using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
27
28namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
29  [Item("Symbolic Regression Problem (single objective)", "Represents a single objective symbolic regression problem.")]
30  [StorableClass]
31  [Creatable("Problems")]
[5759]32  public class SymbolicRegressionSingleObjectiveProblem : SymbolicDataAnalysisSingleObjectiveProblem<IRegressionProblemData, ISymbolicRegressionSingleObjectiveEvaluator, ISymbolicDataAnalysisSolutionCreator>, IRegressionProblem {
[5618]33    private const double PunishmentFactor = 10;
[5685]34    private const int InitialMaximumTreeDepth = 8;
35    private const int InitialMaximumTreeLength = 25;
[5770]36    private const string EstimationLimitsParameterName = "EstimationLimits";
37    private const string EstimationLimitsParameterDescription = "The limits for the estimated value that can be returned by the symbolic regression model.";
[5716]38
[5685]39    #region parameter properties
[5770]40    public IFixedValueParameter<DoubleLimit> EstimationLimitsParameter {
41      get { return (IFixedValueParameter<DoubleLimit>)Parameters[EstimationLimitsParameterName]; }
[5685]42    }
43    #endregion
44    #region properties
[5770]45    public DoubleLimit EstimationLimits {
46      get { return EstimationLimitsParameter.Value; }
[5685]47    }
48    #endregion
[5618]49    [StorableConstructor]
50    protected SymbolicRegressionSingleObjectiveProblem(bool deserializing) : base(deserializing) { }
[8175]51    protected SymbolicRegressionSingleObjectiveProblem(SymbolicRegressionSingleObjectiveProblem original, Cloner cloner)
52      : base(original, cloner) {
53      RegisterEventHandlers();
54    }
[5618]55    public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicRegressionSingleObjectiveProblem(this, cloner); }
56
57    public SymbolicRegressionSingleObjectiveProblem()
58      : base(new RegressionProblemData(), new SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator(), new SymbolicDataAnalysisExpressionTreeCreator()) {
[5847]59      Parameters.Add(new FixedValueParameter<DoubleLimit>(EstimationLimitsParameterName, EstimationLimitsParameterDescription));
[5685]60
[5854]61      EstimationLimitsParameter.Hidden = true;
62
[8664]63
64      ApplyLinearScalingParameter.Value.Value = true;
[5618]65      Maximization.Value = true;
[5685]66      MaximumSymbolicExpressionTreeDepth.Value = InitialMaximumTreeDepth;
67      MaximumSymbolicExpressionTreeLength.Value = InitialMaximumTreeLength;
68
[8175]69      RegisterEventHandlers();
[6803]70      ConfigureGrammarSymbols();
[5685]71      InitializeOperators();
[5716]72      UpdateEstimationLimits();
[5618]73    }
74
[8130]75    [StorableHook(HookType.AfterDeserialization)]
76    private void AfterDeserialization() {
[8175]77      RegisterEventHandlers();
[8130]78      // compatibility
79      bool changed = false;
80      if (!Operators.OfType<SymbolicRegressionSingleObjectiveTrainingParetoBestSolutionAnalyzer>().Any()) {
81        Operators.Add(new SymbolicRegressionSingleObjectiveTrainingParetoBestSolutionAnalyzer());
82        changed = true;
83      }
84      if (!Operators.OfType<SymbolicRegressionSingleObjectiveValidationParetoBestSolutionAnalyzer>().Any()) {
85        Operators.Add(new SymbolicRegressionSingleObjectiveValidationParetoBestSolutionAnalyzer());
86        changed = true;
87      }
[10596]88      if (!Operators.OfType<SymbolicRegressionSolutionsAnalyzer>().Any()) {
89        Operators.Add(new SymbolicRegressionSolutionsAnalyzer());
90        changed = true;
91      }
[8130]92      if (changed) {
93        ParameterizeOperators();
94      }
95    }
96
[8175]97    private void RegisterEventHandlers() {
98      SymbolicExpressionTreeGrammarParameter.ValueChanged += (o, e) => ConfigureGrammarSymbols();
99    }
100
[6803]101    private void ConfigureGrammarSymbols() {
102      var grammar = SymbolicExpressionTreeGrammar as TypeCoherentExpressionGrammar;
103      if (grammar != null) grammar.ConfigureAsDefaultRegressionGrammar();
104    }
105
[5685]106    private void InitializeOperators() {
107      Operators.Add(new SymbolicRegressionSingleObjectiveTrainingBestSolutionAnalyzer());
108      Operators.Add(new SymbolicRegressionSingleObjectiveValidationBestSolutionAnalyzer());
[5747]109      Operators.Add(new SymbolicRegressionSingleObjectiveOverfittingAnalyzer());
[7726]110      Operators.Add(new SymbolicRegressionSingleObjectiveTrainingParetoBestSolutionAnalyzer());
[7734]111      Operators.Add(new SymbolicRegressionSingleObjectiveValidationParetoBestSolutionAnalyzer());
[10596]112      Operators.Add(new SymbolicRegressionSolutionsAnalyzer());
[7726]113
[5685]114      ParameterizeOperators();
115    }
[5716]116
[5685]117    private void UpdateEstimationLimits() {
[8139]118      if (ProblemData.TrainingIndices.Any()) {
119        var targetValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices).ToList();
[5618]120        var mean = targetValues.Average();
121        var range = targetValues.Max() - targetValues.Min();
[5770]122        EstimationLimits.Upper = mean + PunishmentFactor * range;
123        EstimationLimits.Lower = mean - PunishmentFactor * range;
[6754]124      } else {
125        EstimationLimits.Upper = double.MaxValue;
126        EstimationLimits.Lower = double.MinValue;
[5618]127      }
128    }
[5623]129
[5685]130    protected override void OnProblemDataChanged() {
131      base.OnProblemDataChanged();
132      UpdateEstimationLimits();
133    }
134
135    protected override void ParameterizeOperators() {
136      base.ParameterizeOperators();
[5770]137      if (Parameters.ContainsKey(EstimationLimitsParameterName)) {
138        var operators = Parameters.OfType<IValueParameter>().Select(p => p.Value).OfType<IOperator>().Union(Operators);
139        foreach (var op in operators.OfType<ISymbolicDataAnalysisBoundedOperator>()) {
140          op.EstimationLimitsParameter.ActualName = EstimationLimitsParameter.Name;
141        }
[5685]142      }
143    }
[5618]144  }
145}
Note: See TracBrowser for help on using the repository browser.