1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
28 | using HeuristicLab.Parameters;
|
---|
29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
|
---|
32 | [Item("SymbolicRegressionConstantOptimizationEvaluator", "Calculates mean squared error of a symbolic regression solution and optimizes the constant used.")]
|
---|
33 | [StorableClass]
|
---|
34 | public class SymbolicRegressionConstantOptimizationEvaluator : SymbolicRegressionSingleObjectiveEvaluator {
|
---|
35 | private const string ConstantOptimizationIterationsParameterName = "ConstantOptimizationIterations";
|
---|
36 | private const string ConstantOptimizationImprovementParameterName = "ConstantOptimizationImprovement";
|
---|
37 | private const string ConstantOptimizationProbabilityParameterName = "ConstantOptimizationProbability";
|
---|
38 | private const string ConstantOptimizationRowsPercentageParameterName = "ConstantOptimizationRowsPercentage";
|
---|
39 |
|
---|
40 | private const string EvaluatedTreesResultName = "EvaluatedTrees";
|
---|
41 | private const string EvaluatedTreeNodesResultName = "EvaluatedTreeNodes";
|
---|
42 |
|
---|
43 | public ILookupParameter<IntValue> EvaluatedTreesParameter {
|
---|
44 | get { return (ILookupParameter<IntValue>)Parameters[EvaluatedTreesResultName]; }
|
---|
45 | }
|
---|
46 | public ILookupParameter<IntValue> EvaluatedTreeNodesParameter {
|
---|
47 | get { return (ILookupParameter<IntValue>)Parameters[EvaluatedTreeNodesResultName]; }
|
---|
48 | }
|
---|
49 |
|
---|
50 | public IFixedValueParameter<IntValue> ConstantOptimizationIterationsParameter {
|
---|
51 | get { return (IFixedValueParameter<IntValue>)Parameters[ConstantOptimizationIterationsParameterName]; }
|
---|
52 | }
|
---|
53 | public IFixedValueParameter<DoubleValue> ConstantOptimizationImprovementParameter {
|
---|
54 | get { return (IFixedValueParameter<DoubleValue>)Parameters[ConstantOptimizationImprovementParameterName]; }
|
---|
55 | }
|
---|
56 | public IFixedValueParameter<PercentValue> ConstantOptimizationProbabilityParameter {
|
---|
57 | get { return (IFixedValueParameter<PercentValue>)Parameters[ConstantOptimizationProbabilityParameterName]; }
|
---|
58 | }
|
---|
59 | public IFixedValueParameter<PercentValue> ConstantOptimizationRowsPercentageParameter {
|
---|
60 | get { return (IFixedValueParameter<PercentValue>)Parameters[ConstantOptimizationRowsPercentageParameterName]; }
|
---|
61 | }
|
---|
62 |
|
---|
63 | public IntValue ConstantOptimizationIterations {
|
---|
64 | get { return ConstantOptimizationIterationsParameter.Value; }
|
---|
65 | }
|
---|
66 | public DoubleValue ConstantOptimizationImprovement {
|
---|
67 | get { return ConstantOptimizationImprovementParameter.Value; }
|
---|
68 | }
|
---|
69 | public PercentValue ConstantOptimizationProbability {
|
---|
70 | get { return ConstantOptimizationProbabilityParameter.Value; }
|
---|
71 | }
|
---|
72 | public PercentValue ConstantOptimizationRowsPercentage {
|
---|
73 | get { return ConstantOptimizationRowsPercentageParameter.Value; }
|
---|
74 | }
|
---|
75 |
|
---|
76 | public override bool Maximization {
|
---|
77 | get { return true; }
|
---|
78 | }
|
---|
79 |
|
---|
80 | [StorableConstructor]
|
---|
81 | protected SymbolicRegressionConstantOptimizationEvaluator(bool deserializing) : base(deserializing) { }
|
---|
82 | protected SymbolicRegressionConstantOptimizationEvaluator(SymbolicRegressionConstantOptimizationEvaluator original, Cloner cloner)
|
---|
83 | : base(original, cloner) {
|
---|
84 | }
|
---|
85 | public SymbolicRegressionConstantOptimizationEvaluator()
|
---|
86 | : base() {
|
---|
87 | Parameters.Add(new FixedValueParameter<IntValue>(ConstantOptimizationIterationsParameterName, "Determines how many iterations should be calculated while optimizing the constant of a symbolic expression tree (0 indicates other or default stopping criterion).", new IntValue(3), true));
|
---|
88 | Parameters.Add(new FixedValueParameter<DoubleValue>(ConstantOptimizationImprovementParameterName, "Determines the relative improvement which must be achieved in the constant optimization to continue with it (0 indicates other or default stopping criterion).", new DoubleValue(0), true));
|
---|
89 | Parameters.Add(new FixedValueParameter<PercentValue>(ConstantOptimizationProbabilityParameterName, "Determines the probability that the constants are optimized", new PercentValue(1), true));
|
---|
90 | Parameters.Add(new FixedValueParameter<PercentValue>(ConstantOptimizationRowsPercentageParameterName, "Determines the percentage of the rows which should be used for constant optimization", new PercentValue(1), true));
|
---|
91 |
|
---|
92 | Parameters.Add(new LookupParameter<IntValue>(EvaluatedTreesResultName));
|
---|
93 | Parameters.Add(new LookupParameter<IntValue>(EvaluatedTreeNodesResultName));
|
---|
94 | }
|
---|
95 |
|
---|
96 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
97 | return new SymbolicRegressionConstantOptimizationEvaluator(this, cloner);
|
---|
98 | }
|
---|
99 |
|
---|
100 | public override IOperation Apply() {
|
---|
101 | AddResults();
|
---|
102 | int seed = RandomParameter.ActualValue.Next();
|
---|
103 | var solution = SymbolicExpressionTreeParameter.ActualValue;
|
---|
104 | double quality;
|
---|
105 | if (RandomParameter.ActualValue.NextDouble() < ConstantOptimizationProbability.Value) {
|
---|
106 | IEnumerable<int> constantOptimizationRows = GenerateRowsToEvaluate(ConstantOptimizationRowsPercentage.Value);
|
---|
107 | quality = OptimizeConstants(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, ProblemDataParameter.ActualValue,
|
---|
108 | constantOptimizationRows, ConstantOptimizationImprovement.Value, ConstantOptimizationIterations.Value, 0.001,
|
---|
109 | EstimationLimitsParameter.ActualValue.Upper, EstimationLimitsParameter.ActualValue.Lower,
|
---|
110 | EvaluatedTreesParameter.ActualValue, EvaluatedTreeNodesParameter.ActualValue);
|
---|
111 | if (ConstantOptimizationRowsPercentage.Value != RelativeNumberOfEvaluatedSamplesParameter.ActualValue.Value) {
|
---|
112 | var evaluationRows = GenerateRowsToEvaluate();
|
---|
113 | quality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, evaluationRows);
|
---|
114 | }
|
---|
115 | } else {
|
---|
116 | var evaluationRows = GenerateRowsToEvaluate();
|
---|
117 | quality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, evaluationRows);
|
---|
118 | }
|
---|
119 | QualityParameter.ActualValue = new DoubleValue(quality);
|
---|
120 | EvaluatedTreesParameter.ActualValue.Value += 1;
|
---|
121 | EvaluatedTreeNodesParameter.ActualValue.Value += solution.Length;
|
---|
122 |
|
---|
123 | if (Successor != null)
|
---|
124 | return ExecutionContext.CreateOperation(Successor);
|
---|
125 | else
|
---|
126 | return null;
|
---|
127 | }
|
---|
128 |
|
---|
129 | private void AddResults() {
|
---|
130 | if (EvaluatedTreesParameter.ActualValue == null) {
|
---|
131 | var scope = ExecutionContext.Scope;
|
---|
132 | while (scope.Parent != null)
|
---|
133 | scope = scope.Parent;
|
---|
134 | scope.Variables.Add(new Core.Variable(EvaluatedTreesResultName, new IntValue()));
|
---|
135 | }
|
---|
136 | if (EvaluatedTreeNodesParameter.ActualValue == null) {
|
---|
137 | var scope = ExecutionContext.Scope;
|
---|
138 | while (scope.Parent != null)
|
---|
139 | scope = scope.Parent;
|
---|
140 | scope.Variables.Add(new Core.Variable(EvaluatedTreeNodesResultName, new IntValue()));
|
---|
141 | }
|
---|
142 | }
|
---|
143 |
|
---|
144 | public override double Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable<int> rows) {
|
---|
145 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context;
|
---|
146 | EstimationLimitsParameter.ExecutionContext = context;
|
---|
147 |
|
---|
148 | double r2 = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows);
|
---|
149 |
|
---|
150 | SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null;
|
---|
151 | EstimationLimitsParameter.ExecutionContext = null;
|
---|
152 |
|
---|
153 | return r2;
|
---|
154 | }
|
---|
155 |
|
---|
156 | public static double OptimizeConstants(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree tree, IRegressionProblemData problemData,
|
---|
157 | IEnumerable<int> rows, double improvement, int iterations, double differentialStep, double upperEstimationLimit = double.MaxValue, double lowerEstimationLimit = double.MinValue, IntValue evaluatedTrees = null, IntValue evaluatedTreeNodes = null) {
|
---|
158 | List<SymbolicExpressionTreeTerminalNode> terminalNodes = tree.Root.IterateNodesPrefix().OfType<SymbolicExpressionTreeTerminalNode>().ToList();
|
---|
159 | double[] c = new double[terminalNodes.Count];
|
---|
160 | int treeLength = tree.Length;
|
---|
161 |
|
---|
162 | //extract inital constants
|
---|
163 | for (int i = 0; i < terminalNodes.Count; i++) {
|
---|
164 | ConstantTreeNode constantTreeNode = terminalNodes[i] as ConstantTreeNode;
|
---|
165 | if (constantTreeNode != null) c[i] = constantTreeNode.Value;
|
---|
166 | VariableTreeNode variableTreeNode = terminalNodes[i] as VariableTreeNode;
|
---|
167 | if (variableTreeNode != null) c[i] = variableTreeNode.Weight;
|
---|
168 | }
|
---|
169 |
|
---|
170 | double epsg = 0;
|
---|
171 | double epsf = improvement;
|
---|
172 | double epsx = 0;
|
---|
173 | int maxits = iterations;
|
---|
174 | double diffstep = differentialStep;
|
---|
175 |
|
---|
176 | alglib.minlmstate state;
|
---|
177 | alglib.minlmreport report;
|
---|
178 |
|
---|
179 | alglib.minlmcreatev(1, c, diffstep, out state);
|
---|
180 | alglib.minlmsetcond(state, epsg, epsf, epsx, maxits);
|
---|
181 | alglib.minlmoptimize(state, CreateCallBack(interpreter, tree, problemData, rows, upperEstimationLimit, lowerEstimationLimit, treeLength, evaluatedTrees, evaluatedTreeNodes), null, terminalNodes);
|
---|
182 | alglib.minlmresults(state, out c, out report);
|
---|
183 |
|
---|
184 | for (int i = 0; i < c.Length; i++) {
|
---|
185 | ConstantTreeNode constantTreeNode = terminalNodes[i] as ConstantTreeNode;
|
---|
186 | if (constantTreeNode != null) constantTreeNode.Value = c[i];
|
---|
187 | VariableTreeNode variableTreeNode = terminalNodes[i] as VariableTreeNode;
|
---|
188 | if (variableTreeNode != null) variableTreeNode.Weight = c[i];
|
---|
189 | }
|
---|
190 |
|
---|
191 | return (state.fi[0] - 1) * -1;
|
---|
192 | }
|
---|
193 |
|
---|
194 | private static alglib.ndimensional_fvec CreateCallBack(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable<int> rows, double upperEstimationLimit, double lowerEstimationLimit, int treeLength, IntValue evaluatedTrees = null, IntValue evaluatedTreeNodes = null) {
|
---|
195 | return (double[] arg, double[] fi, object obj) => {
|
---|
196 | // update constants of tree
|
---|
197 | List<SymbolicExpressionTreeTerminalNode> terminalNodes = (List<SymbolicExpressionTreeTerminalNode>)obj;
|
---|
198 | for (int i = 0; i < terminalNodes.Count; i++) {
|
---|
199 | ConstantTreeNode constantTreeNode = terminalNodes[i] as ConstantTreeNode;
|
---|
200 | if (constantTreeNode != null) constantTreeNode.Value = arg[i];
|
---|
201 | VariableTreeNode variableTreeNode = terminalNodes[i] as VariableTreeNode;
|
---|
202 | if (variableTreeNode != null) variableTreeNode.Weight = arg[i];
|
---|
203 | }
|
---|
204 |
|
---|
205 | double quality = SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator.Calculate(interpreter, tree, lowerEstimationLimit, upperEstimationLimit, problemData, rows);
|
---|
206 |
|
---|
207 | fi[0] = 1 - quality;
|
---|
208 | if (evaluatedTrees != null) evaluatedTrees.Value++;
|
---|
209 | if (evaluatedTreeNodes != null) evaluatedTreeNodes.Value += treeLength;
|
---|
210 | };
|
---|
211 | }
|
---|
212 |
|
---|
213 | }
|
---|
214 | }
|
---|