Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SingleObjective/Evaluators/SymbolicRegressionSingleObjectiveMeanSquaredErrorEvaluator.cs @ 7672

Last change on this file since 7672 was 7672, checked in by mkommend, 13 years ago

#1788: Prepared symbolic regression evaluators to apply linear scaling and moved to separate folder.

File size: 4.9 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Common;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
29using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
30
31namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
32  [Item("Mean squared error Evaluator", "Calculates the mean squared error of a symbolic regression solution.")]
33  [StorableClass]
34  public class SymbolicRegressionSingleObjectiveMeanSquaredErrorEvaluator : SymbolicRegressionSingleObjectiveEvaluator {
35    public override bool Maximization { get { return false; } }
36    [ThreadStatic]
37    private static double[] estimatedValuesCache;
38
39    [StorableConstructor]
40    protected SymbolicRegressionSingleObjectiveMeanSquaredErrorEvaluator(bool deserializing) : base(deserializing) { }
41    protected SymbolicRegressionSingleObjectiveMeanSquaredErrorEvaluator(SymbolicRegressionSingleObjectiveMeanSquaredErrorEvaluator original, Cloner cloner)
42      : base(original, cloner) {
43    }
44    public override IDeepCloneable Clone(Cloner cloner) {
45      return new SymbolicRegressionSingleObjectiveMeanSquaredErrorEvaluator(this, cloner);
46    }
47    public SymbolicRegressionSingleObjectiveMeanSquaredErrorEvaluator() : base() { }
48
49    public override IOperation Apply() {
50      var solution = SymbolicExpressionTreeParameter.ActualValue;
51      IEnumerable<int> rows = GenerateRowsToEvaluate();
52
53      double quality = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, rows, ApplyLinearScaling);
54      QualityParameter.ActualValue = new DoubleValue(quality);
55
56      return base.Apply();
57    }
58
59    public static double Calculate(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, IRegressionProblemData problemData, IEnumerable<int> rows, bool applyLinearScaling) {
60      IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows);
61      IEnumerable<double> originalValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows);
62      IEnumerable<double> boundedEstimatedValues = estimatedValues.LimitToRange(lowerEstimationLimit, upperEstimationLimit);
63      OnlineCalculatorError errorState;
64
65      double mse;
66      if (applyLinearScaling) {
67        //int i = 0;
68        //int rowCount = rows.Count();
69        //if (estimatedValuesCache == null) estimatedValuesCache = new double[problemData.Dataset.Rows];
70        //foreach (var value in boundedEstimatedValues) {
71        //  estimatedValuesCache[i] = value;
72        //  i++;
73        //}
74
75        double alpha, beta;
76        OnlineLinearScalingParameterCalculator.Calculate(boundedEstimatedValues, originalValues, out alpha, out beta, out errorState);
77        mse = OnlineMeanSquaredErrorCalculator.Calculate(originalValues, boundedEstimatedValues.Select(value => value * beta + alpha), out errorState);
78      } else
79        mse = OnlineMeanSquaredErrorCalculator.Calculate(originalValues, boundedEstimatedValues, out errorState);
80
81      if (errorState != OnlineCalculatorError.None) return Double.NaN;
82      else return mse;
83    }
84
85    public override double Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, IRegressionProblemData problemData, IEnumerable<int> rows) {
86      SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context;
87      EstimationLimitsParameter.ExecutionContext = context;
88
89      double mse = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows, ApplyLinearScaling);
90
91      SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null;
92      EstimationLimitsParameter.ExecutionContext = null;
93
94      return mse;
95    }
96  }
97}
Note: See TracBrowser for help on using the repository browser.