Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression.Views/3.4/InteractiveSymbolicRegressionSolutionSimplifierView.cs @ 7429

Last change on this file since 7429 was 7259, checked in by swagner, 13 years ago

Updated year of copyrights to 2012 (#1716)

File size: 6.1 KB
RevLine 
[3915]1#region License Information
2/* HeuristicLab
[7259]3 * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
[3915]4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Common;
[6256]26using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
[5699]27using HeuristicLab.Problems.DataAnalysis.Symbolic.Views;
[3915]28
[5699]29namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression.Views {
30  public partial class InteractiveSymbolicRegressionSolutionSimplifierView : InteractiveSymbolicDataAnalysisSolutionSimplifierView {
31    private readonly ConstantTreeNode constantNode;
32    private readonly SymbolicExpressionTree tempTree;
[5717]33
34    public new SymbolicRegressionSolution Content {
35      get { return (SymbolicRegressionSolution)base.Content; }
36      set { base.Content = value; }
37    }
38
[5699]39    public InteractiveSymbolicRegressionSolutionSimplifierView()
40      : base() {
41      InitializeComponent();
42      this.Caption = "Interactive Regression Solution Simplifier";
[3915]43
[5699]44      constantNode = ((ConstantTreeNode)new Constant().CreateTreeNode());
45      ISymbolicExpressionTreeNode root = new ProgramRootSymbol().CreateTreeNode();
46      ISymbolicExpressionTreeNode start = new StartSymbol().CreateTreeNode();
[5736]47      root.AddSubtree(start);
[5699]48      tempTree = new SymbolicExpressionTree(root);
[3915]49    }
50
[5717]51    protected override void UpdateModel(ISymbolicExpressionTree tree) {
[5818]52      var model = new SymbolicRegressionModel(tree, Content.Model.Interpreter);
53      SymbolicRegressionModel.Scale(model, Content.ProblemData);
54      Content.Model = model;
[3915]55    }
56
[5717]57    protected override Dictionary<ISymbolicExpressionTreeNode, double> CalculateReplacementValues(ISymbolicExpressionTree tree) {
[5699]58      Dictionary<ISymbolicExpressionTreeNode, double> replacementValues = new Dictionary<ISymbolicExpressionTreeNode, double>();
[5993]59      foreach (ISymbolicExpressionTreeNode node in tree.Root.GetSubtree(0).GetSubtree(0).IterateNodesPrefix()) {
60        replacementValues[node] = CalculateReplacementValue(node, tree);
[5699]61      }
62      return replacementValues;
[3915]63    }
64
[5717]65    protected override Dictionary<ISymbolicExpressionTreeNode, double> CalculateImpactValues(ISymbolicExpressionTree tree) {
66      var interpreter = Content.Model.Interpreter;
67      var dataset = Content.ProblemData.Dataset;
68      var rows = Content.ProblemData.TrainingIndizes;
69      string targetVariable = Content.ProblemData.TargetVariable;
[5699]70      Dictionary<ISymbolicExpressionTreeNode, double> impactValues = new Dictionary<ISymbolicExpressionTreeNode, double>();
[5736]71      List<ISymbolicExpressionTreeNode> nodes = tree.Root.GetSubtree(0).GetSubtree(0).IterateNodesPostfix().ToList();
[5699]72      var originalOutput = interpreter.GetSymbolicExpressionTreeValues(tree, dataset, rows)
73        .ToArray();
[6740]74      var targetValues = dataset.GetDoubleValues(targetVariable, rows);
[5942]75      OnlineCalculatorError errorState;
76      double originalR2 = OnlinePearsonsRSquaredCalculator.Calculate(targetValues, originalOutput, out errorState);
77      if (errorState != OnlineCalculatorError.None) originalR2 = 0.0;
[3915]78
[5699]79      foreach (ISymbolicExpressionTreeNode node in nodes) {
80        var parent = node.Parent;
[5993]81        constantNode.Value = CalculateReplacementValue(node, tree);
[5699]82        ISymbolicExpressionTreeNode replacementNode = constantNode;
83        SwitchNode(parent, node, replacementNode);
[5717]84        var newOutput = interpreter.GetSymbolicExpressionTreeValues(tree, dataset, rows);
[5942]85        double newR2 = OnlinePearsonsRSquaredCalculator.Calculate(targetValues, newOutput, out errorState);
86        if (errorState != OnlineCalculatorError.None) newR2 = 0.0;
[3915]87
[5717]88        // impact = 0 if no change
89        // impact < 0 if new solution is better
90        // impact > 0 if new solution is worse
91        impactValues[node] = originalR2 - newR2;
[5699]92        SwitchNode(parent, replacementNode, node);
[3915]93      }
[5699]94      return impactValues;
[3915]95    }
96
[5993]97    private double CalculateReplacementValue(ISymbolicExpressionTreeNode node, ISymbolicExpressionTree sourceTree) {
98      // remove old ADFs
[6803]99      while (tempTree.Root.SubtreeCount > 1) tempTree.Root.RemoveSubtree(1);
[5993]100      // clone ADFs of source tree
[6803]101      for (int i = 1; i < sourceTree.Root.SubtreeCount; i++) {
[5993]102        tempTree.Root.AddSubtree((ISymbolicExpressionTreeNode)sourceTree.Root.GetSubtree(i).Clone());
103      }
[5736]104      var start = tempTree.Root.GetSubtree(0);
[6803]105      while (start.SubtreeCount > 0) start.RemoveSubtree(0);
[5736]106      start.AddSubtree((ISymbolicExpressionTreeNode)node.Clone());
[5717]107      var interpreter = Content.Model.Interpreter;
108      var rows = Content.ProblemData.TrainingIndizes;
[5699]109      return interpreter.GetSymbolicExpressionTreeValues(tempTree, Content.ProblemData.Dataset, rows).Median();
[3915]110    }
111
112
[5699]113    private void SwitchNode(ISymbolicExpressionTreeNode root, ISymbolicExpressionTreeNode oldBranch, ISymbolicExpressionTreeNode newBranch) {
[6803]114      for (int i = 0; i < root.SubtreeCount; i++) {
[5736]115        if (root.GetSubtree(i) == oldBranch) {
116          root.RemoveSubtree(i);
117          root.InsertSubtree(i, newBranch);
[3915]118          return;
119        }
120      }
121    }
[6256]122
123    protected override void btnOptimizeConstants_Click(object sender, EventArgs e) {
[6376]124      SymbolicRegressionConstantOptimizationEvaluator.OptimizeConstants(Content.Model.Interpreter, Content.Model.SymbolicExpressionTree, Content.ProblemData, Content.ProblemData.TrainingIndizes, 0.001, 0, 0.0001);
[6256]125      UpdateModel(Content.Model.SymbolicExpressionTree);
126    }
[3915]127  }
128}
Note: See TracBrowser for help on using the repository browser.