[5649] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using System.Linq;
|
---|
| 24 | using HeuristicLab.Common;
|
---|
| 25 | using HeuristicLab.Core;
|
---|
| 26 | using HeuristicLab.Data;
|
---|
| 27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 28 | using HeuristicLab.Operators;
|
---|
| 29 | using HeuristicLab.Parameters;
|
---|
| 30 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 31 | using HeuristicLab.Optimization;
|
---|
| 32 | using System;
|
---|
| 33 |
|
---|
| 34 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
|
---|
| 35 | /// <summary>
|
---|
| 36 | /// Represents a symbolic classification solution (model + data) and attributes of the solution like accuracy and complexity
|
---|
| 37 | /// </summary>
|
---|
| 38 | [StorableClass]
|
---|
| 39 | [Item(Name = "SymbolicDiscriminantFunctionClassificationSolution", Description = "Represents a symbolic classification solution (model + data) and attributes of the solution like accuracy and complexity.")]
|
---|
[5717] | 40 | public sealed class SymbolicDiscriminantFunctionClassificationSolution : DiscriminantFunctionClassificationSolution, ISymbolicClassificationSolution {
|
---|
[5736] | 41 | private const string ModelLengthResultName = "ModelLength";
|
---|
| 42 | private const string ModelDepthResultName = "ModelDepth";
|
---|
[5649] | 43 |
|
---|
[5717] | 44 | public new ISymbolicDiscriminantFunctionClassificationModel Model {
|
---|
| 45 | get { return (ISymbolicDiscriminantFunctionClassificationModel)base.Model; }
|
---|
| 46 | set { base.Model = value; }
|
---|
[5649] | 47 | }
|
---|
| 48 |
|
---|
[5678] | 49 | ISymbolicClassificationModel ISymbolicClassificationSolution.Model {
|
---|
[5717] | 50 | get { return Model; }
|
---|
[5678] | 51 | }
|
---|
| 52 |
|
---|
[5649] | 53 | ISymbolicDataAnalysisModel ISymbolicDataAnalysisSolution.Model {
|
---|
[5717] | 54 | get { return Model; }
|
---|
[5649] | 55 | }
|
---|
[5736] | 56 | public int ModelLength {
|
---|
| 57 | get { return ((IntValue)this[ModelLengthResultName].Value).Value; }
|
---|
| 58 | private set { ((IntValue)this[ModelLengthResultName].Value).Value = value; }
|
---|
| 59 | }
|
---|
[5649] | 60 |
|
---|
[5736] | 61 | public int ModelDepth {
|
---|
| 62 | get { return ((IntValue)this[ModelDepthResultName].Value).Value; }
|
---|
| 63 | private set { ((IntValue)this[ModelDepthResultName].Value).Value = value; }
|
---|
| 64 | }
|
---|
[5649] | 65 | [StorableConstructor]
|
---|
[5717] | 66 | private SymbolicDiscriminantFunctionClassificationSolution(bool deserializing) : base(deserializing) { }
|
---|
| 67 | private SymbolicDiscriminantFunctionClassificationSolution(SymbolicDiscriminantFunctionClassificationSolution original, Cloner cloner)
|
---|
[5649] | 68 | : base(original, cloner) {
|
---|
| 69 | }
|
---|
[5717] | 70 | public SymbolicDiscriminantFunctionClassificationSolution(ISymbolicDiscriminantFunctionClassificationModel model, IClassificationProblemData problemData)
|
---|
[5649] | 71 | : base(model, problemData) {
|
---|
[5736] | 72 | Add(new Result(ModelLengthResultName, "Length of the symbolic classification model.", new IntValue()));
|
---|
| 73 | Add(new Result(ModelDepthResultName, "Depth of the symbolic classification model.", new IntValue()));
|
---|
| 74 | RecalculateResults();
|
---|
[5649] | 75 | }
|
---|
| 76 |
|
---|
| 77 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 78 | return new SymbolicDiscriminantFunctionClassificationSolution(this, cloner);
|
---|
[5717] | 79 | }
|
---|
[5736] | 80 |
|
---|
| 81 | protected override void OnModelChanged(EventArgs e) {
|
---|
| 82 | base.OnModelChanged(e);
|
---|
| 83 | RecalculateResults();
|
---|
| 84 | }
|
---|
| 85 |
|
---|
| 86 | private new void RecalculateResults() {
|
---|
| 87 | ModelLength = Model.SymbolicExpressionTree.Length;
|
---|
| 88 | ModelDepth = Model.SymbolicExpressionTree.Depth;
|
---|
| 89 | }
|
---|
| 90 |
|
---|
| 91 | public void ScaleModel() {
|
---|
| 92 | var dataset = ProblemData.Dataset;
|
---|
| 93 | var targetVariable = ProblemData.TargetVariable;
|
---|
| 94 | var rows = ProblemData.TrainingIndizes;
|
---|
| 95 | var estimatedValues = GetEstimatedValues(rows);
|
---|
| 96 | var targetValues = dataset.GetEnumeratedVariableValues(targetVariable, rows);
|
---|
| 97 | double alpha;
|
---|
| 98 | double beta;
|
---|
| 99 | OnlineLinearScalingParameterCalculator.Calculate(estimatedValues, targetValues, out alpha, out beta);
|
---|
| 100 |
|
---|
| 101 | ConstantTreeNode alphaTreeNode = null;
|
---|
| 102 | ConstantTreeNode betaTreeNode = null;
|
---|
| 103 | // check if model has been scaled previously by analyzing the structure of the tree
|
---|
| 104 | var startNode = Model.SymbolicExpressionTree.Root.GetSubtree(0);
|
---|
| 105 | if (startNode.GetSubtree(0).Symbol is Addition) {
|
---|
| 106 | var addNode = startNode.GetSubtree(0);
|
---|
| 107 | if (addNode.SubtreesCount == 2 && addNode.GetSubtree(0).Symbol is Multiplication && addNode.GetSubtree(1).Symbol is Constant) {
|
---|
| 108 | alphaTreeNode = addNode.GetSubtree(1) as ConstantTreeNode;
|
---|
| 109 | var mulNode = addNode.GetSubtree(0);
|
---|
| 110 | if (mulNode.SubtreesCount == 2 && mulNode.GetSubtree(1).Symbol is Constant) {
|
---|
| 111 | betaTreeNode = mulNode.GetSubtree(1) as ConstantTreeNode;
|
---|
| 112 | }
|
---|
| 113 | }
|
---|
| 114 | }
|
---|
| 115 | // if tree structure matches the structure necessary for linear scaling then reuse the existing tree nodes
|
---|
| 116 | if (alphaTreeNode != null && betaTreeNode != null) {
|
---|
| 117 | betaTreeNode.Value *= beta;
|
---|
| 118 | alphaTreeNode.Value *= beta;
|
---|
| 119 | alphaTreeNode.Value += alpha;
|
---|
| 120 | } else {
|
---|
| 121 | var mainBranch = startNode.GetSubtree(0);
|
---|
| 122 | startNode.RemoveSubtree(0);
|
---|
| 123 | var scaledMainBranch = MakeSum(MakeProduct(beta, mainBranch), alpha);
|
---|
| 124 | startNode.AddSubtree(scaledMainBranch);
|
---|
| 125 | }
|
---|
| 126 |
|
---|
| 127 | OnModelChanged(EventArgs.Empty);
|
---|
| 128 | }
|
---|
| 129 |
|
---|
| 130 | private static ISymbolicExpressionTreeNode MakeSum(ISymbolicExpressionTreeNode treeNode, double alpha) {
|
---|
| 131 | if (alpha.IsAlmost(0.0)) {
|
---|
| 132 | return treeNode;
|
---|
| 133 | } else {
|
---|
| 134 | var node = (new Addition()).CreateTreeNode();
|
---|
| 135 | var alphaConst = MakeConstant(alpha);
|
---|
| 136 | node.AddSubtree(treeNode);
|
---|
| 137 | node.AddSubtree(alphaConst);
|
---|
| 138 | return node;
|
---|
| 139 | }
|
---|
| 140 | }
|
---|
| 141 |
|
---|
| 142 | private static ISymbolicExpressionTreeNode MakeProduct(double beta, ISymbolicExpressionTreeNode treeNode) {
|
---|
| 143 | if (beta.IsAlmost(1.0)) {
|
---|
| 144 | return treeNode;
|
---|
| 145 | } else {
|
---|
| 146 | var node = (new Multiplication()).CreateTreeNode();
|
---|
| 147 | var betaConst = MakeConstant(beta);
|
---|
| 148 | node.AddSubtree(treeNode);
|
---|
| 149 | node.AddSubtree(betaConst);
|
---|
| 150 | return node;
|
---|
| 151 | }
|
---|
| 152 | }
|
---|
| 153 |
|
---|
| 154 | private static ISymbolicExpressionTreeNode MakeConstant(double c) {
|
---|
| 155 | var node = (ConstantTreeNode)(new Constant()).CreateTreeNode();
|
---|
| 156 | node.Value = c;
|
---|
| 157 | return node;
|
---|
| 158 | }
|
---|
[5649] | 159 | }
|
---|
| 160 | }
|
---|