[8935] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[9456] | 3 | * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[8935] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[10469] | 22 | using System;
|
---|
[8935] | 23 | using System.Collections.Generic;
|
---|
[8409] | 24 | using HeuristicLab.Common;
|
---|
[10469] | 25 | using HeuristicLab.Core;
|
---|
[8409] | 26 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
[10469] | 27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
[8409] | 28 |
|
---|
| 29 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
|
---|
[10469] | 30 | [StorableClass]
|
---|
| 31 | [Item("SymbolicClassificationSolutionImpactValuesCalculator", "Calculate symbolic expression tree node impact values for classification problems.")]
|
---|
[8946] | 32 | public class SymbolicClassificationSolutionImpactValuesCalculator : SymbolicDataAnalysisSolutionImpactValuesCalculator {
|
---|
[10469] | 33 | public SymbolicClassificationSolutionImpactValuesCalculator() { }
|
---|
| 34 | protected SymbolicClassificationSolutionImpactValuesCalculator(SymbolicClassificationSolutionImpactValuesCalculator original, Cloner cloner)
|
---|
| 35 | : base(original, cloner) { }
|
---|
| 36 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 37 | return new SymbolicClassificationSolutionImpactValuesCalculator(this, cloner);
|
---|
| 38 | }
|
---|
| 39 | [StorableConstructor]
|
---|
| 40 | protected SymbolicClassificationSolutionImpactValuesCalculator(bool deserializing) : base(deserializing) { }
|
---|
| 41 |
|
---|
[8946] | 42 | public override double CalculateReplacementValue(ISymbolicDataAnalysisModel model, ISymbolicExpressionTreeNode node, IDataAnalysisProblemData problemData, IEnumerable<int> rows) {
|
---|
| 43 | var classificationModel = (ISymbolicClassificationModel)model;
|
---|
| 44 | var classificationProblemData = (IClassificationProblemData)problemData;
|
---|
| 45 |
|
---|
| 46 | return CalculateReplacementValue(node, classificationModel.SymbolicExpressionTree, classificationModel.Interpreter, classificationProblemData.Dataset, rows);
|
---|
[8409] | 47 | }
|
---|
[8935] | 48 |
|
---|
[8946] | 49 | public override double CalculateImpactValue(ISymbolicDataAnalysisModel model, ISymbolicExpressionTreeNode node, IDataAnalysisProblemData problemData, IEnumerable<int> rows, double originalQuality = double.NaN) {
|
---|
[10469] | 50 | double impactValue, replacementValue;
|
---|
| 51 | CalculateImpactAndReplacementValues(model, node, problemData, rows, out impactValue, out replacementValue, originalQuality);
|
---|
| 52 | return impactValue;
|
---|
| 53 | }
|
---|
| 54 |
|
---|
| 55 | public override void CalculateImpactAndReplacementValues(ISymbolicDataAnalysisModel model, ISymbolicExpressionTreeNode node,
|
---|
| 56 | IDataAnalysisProblemData problemData, IEnumerable<int> rows, out double impactValue, out double replacementValue,
|
---|
| 57 | double originalQuality = Double.NaN) {
|
---|
[8946] | 58 | var classificationModel = (ISymbolicClassificationModel)model;
|
---|
| 59 | var classificationProblemData = (IClassificationProblemData)problemData;
|
---|
| 60 |
|
---|
| 61 | var dataset = classificationProblemData.Dataset;
|
---|
| 62 | var targetClassValues = dataset.GetDoubleValues(classificationProblemData.TargetVariable, rows);
|
---|
| 63 |
|
---|
[8409] | 64 | OnlineCalculatorError errorState;
|
---|
[8946] | 65 | if (double.IsNaN(originalQuality)) {
|
---|
| 66 | var originalClassValues = classificationModel.GetEstimatedClassValues(dataset, rows);
|
---|
| 67 | originalQuality = OnlineAccuracyCalculator.Calculate(targetClassValues, originalClassValues, out errorState);
|
---|
| 68 | if (errorState != OnlineCalculatorError.None) originalQuality = 0.0;
|
---|
| 69 | }
|
---|
[8409] | 70 |
|
---|
[10469] | 71 | replacementValue = CalculateReplacementValue(classificationModel, node, classificationProblemData, rows);
|
---|
[8946] | 72 | var constantNode = new ConstantTreeNode(new Constant()) { Value = replacementValue };
|
---|
[10273] | 73 |
|
---|
[8946] | 74 | var cloner = new Cloner();
|
---|
| 75 | var tempModel = cloner.Clone(classificationModel);
|
---|
[10273] | 76 | var tempModelNode = (ISymbolicExpressionTreeNode)cloner.GetClone(node);
|
---|
[8409] | 77 |
|
---|
[10273] | 78 | var tempModelParentNode = tempModelNode.Parent;
|
---|
| 79 | int i = tempModelParentNode.IndexOfSubtree(tempModelNode);
|
---|
| 80 | tempModelParentNode.RemoveSubtree(i);
|
---|
| 81 | tempModelParentNode.InsertSubtree(i, constantNode);
|
---|
| 82 |
|
---|
[8946] | 83 | var estimatedClassValues = tempModel.GetEstimatedClassValues(dataset, rows);
|
---|
| 84 | double newQuality = OnlineAccuracyCalculator.Calculate(targetClassValues, estimatedClassValues, out errorState);
|
---|
| 85 | if (errorState != OnlineCalculatorError.None) newQuality = 0.0;
|
---|
[8409] | 86 |
|
---|
[10469] | 87 | impactValue = originalQuality - newQuality;
|
---|
[8409] | 88 | }
|
---|
| 89 | }
|
---|
| 90 | }
|
---|