1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using HeuristicLab.Common;
|
---|
23 | using HeuristicLab.Core;
|
---|
24 | using HeuristicLab.Data;
|
---|
25 | using HeuristicLab.Optimization;
|
---|
26 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
27 |
|
---|
28 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
|
---|
29 | /// <summary>
|
---|
30 | /// Represents a symbolic classification solution (model + data) and attributes of the solution like accuracy and complexity
|
---|
31 | /// </summary>
|
---|
32 | [StorableClass]
|
---|
33 | [Item(Name = "SymbolicClassificationSolution", Description = "Represents a symbolic classification solution (model + data) and attributes of the solution like accuracy and complexity.")]
|
---|
34 | public sealed class SymbolicClassificationSolution : ClassificationSolution, ISymbolicClassificationSolution {
|
---|
35 | private const string ModelLengthResultName = "ModelLength";
|
---|
36 | private const string ModelDepthResultName = "ModelDepth";
|
---|
37 |
|
---|
38 | public new ISymbolicClassificationModel Model {
|
---|
39 | get { return (ISymbolicClassificationModel)base.Model; }
|
---|
40 | set { base.Model = value; }
|
---|
41 | }
|
---|
42 |
|
---|
43 | ISymbolicDataAnalysisModel ISymbolicDataAnalysisSolution.Model {
|
---|
44 | get { return (ISymbolicDataAnalysisModel)base.Model; }
|
---|
45 | }
|
---|
46 | public int ModelLength {
|
---|
47 | get { return ((IntValue)this[ModelLengthResultName].Value).Value; }
|
---|
48 | private set { ((IntValue)this[ModelLengthResultName].Value).Value = value; }
|
---|
49 | }
|
---|
50 |
|
---|
51 | public int ModelDepth {
|
---|
52 | get { return ((IntValue)this[ModelDepthResultName].Value).Value; }
|
---|
53 | private set { ((IntValue)this[ModelDepthResultName].Value).Value = value; }
|
---|
54 | }
|
---|
55 |
|
---|
56 | [StorableConstructor]
|
---|
57 | private SymbolicClassificationSolution(bool deserializing) : base(deserializing) { }
|
---|
58 | private SymbolicClassificationSolution(SymbolicClassificationSolution original, Cloner cloner)
|
---|
59 | : base(original, cloner) {
|
---|
60 | }
|
---|
61 | public SymbolicClassificationSolution(ISymbolicClassificationModel model, IClassificationProblemData problemData)
|
---|
62 | : base(model, problemData) {
|
---|
63 | Add(new Result(ModelLengthResultName, "Length of the symbolic classification model.", new IntValue()));
|
---|
64 | Add(new Result(ModelDepthResultName, "Depth of the symbolic classification model.", new IntValue()));
|
---|
65 | RecalculateResults();
|
---|
66 | }
|
---|
67 |
|
---|
68 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
69 | return new SymbolicClassificationSolution(this, cloner);
|
---|
70 | }
|
---|
71 |
|
---|
72 | protected override void RecalculateResults() {
|
---|
73 | ModelLength = Model.SymbolicExpressionTree.Length;
|
---|
74 | ModelDepth = Model.SymbolicExpressionTree.Depth;
|
---|
75 | CalculateResults();
|
---|
76 | }
|
---|
77 | }
|
---|
78 | }
|
---|