[5624] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using System.Linq;
|
---|
| 24 | using HeuristicLab.Common;
|
---|
| 25 | using HeuristicLab.Core;
|
---|
| 26 | using HeuristicLab.Data;
|
---|
| 27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 28 | using HeuristicLab.Operators;
|
---|
| 29 | using HeuristicLab.Parameters;
|
---|
| 30 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 31 | using HeuristicLab.Optimization;
|
---|
| 32 | using System;
|
---|
| 33 |
|
---|
| 34 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
|
---|
| 35 | /// <summary>
|
---|
| 36 | /// Represents a symbolic classification solution (model + data) and attributes of the solution like accuracy and complexity
|
---|
| 37 | /// </summary>
|
---|
| 38 | [StorableClass]
|
---|
| 39 | [Item(Name = "SymbolicClassificationSolution", Description = "Represents a symbolic classification solution (model + data) and attributes of the solution like accuracy and complexity.")]
|
---|
[5717] | 40 | public sealed class SymbolicClassificationSolution : ClassificationSolution, ISymbolicClassificationSolution {
|
---|
[5736] | 41 | private const string ModelLengthResultName = "ModelLength";
|
---|
| 42 | private const string ModelDepthResultName = "ModelDepth";
|
---|
[5624] | 43 |
|
---|
| 44 | public new ISymbolicClassificationModel Model {
|
---|
| 45 | get { return (ISymbolicClassificationModel)base.Model; }
|
---|
[5717] | 46 | set { base.Model = value; }
|
---|
[5624] | 47 | }
|
---|
| 48 |
|
---|
| 49 | ISymbolicDataAnalysisModel ISymbolicDataAnalysisSolution.Model {
|
---|
| 50 | get { return (ISymbolicDataAnalysisModel)base.Model; }
|
---|
| 51 | }
|
---|
[5736] | 52 | public int ModelLength {
|
---|
| 53 | get { return ((IntValue)this[ModelLengthResultName].Value).Value; }
|
---|
| 54 | private set { ((IntValue)this[ModelLengthResultName].Value).Value = value; }
|
---|
| 55 | }
|
---|
[5624] | 56 |
|
---|
[5736] | 57 | public int ModelDepth {
|
---|
| 58 | get { return ((IntValue)this[ModelDepthResultName].Value).Value; }
|
---|
| 59 | private set { ((IntValue)this[ModelDepthResultName].Value).Value = value; }
|
---|
| 60 | }
|
---|
| 61 |
|
---|
[5624] | 62 | [StorableConstructor]
|
---|
[5717] | 63 | private SymbolicClassificationSolution(bool deserializing) : base(deserializing) { }
|
---|
| 64 | private SymbolicClassificationSolution(SymbolicClassificationSolution original, Cloner cloner)
|
---|
[5624] | 65 | : base(original, cloner) {
|
---|
| 66 | }
|
---|
| 67 | public SymbolicClassificationSolution(ISymbolicClassificationModel model, IClassificationProblemData problemData)
|
---|
| 68 | : base(model, problemData) {
|
---|
[5736] | 69 | Add(new Result(ModelLengthResultName, "Length of the symbolic classification model.", new IntValue()));
|
---|
| 70 | Add(new Result(ModelDepthResultName, "Depth of the symbolic classification model.", new IntValue()));
|
---|
| 71 | RecalculateResults();
|
---|
[5624] | 72 | }
|
---|
| 73 |
|
---|
| 74 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 75 | return new SymbolicClassificationSolution(this, cloner);
|
---|
| 76 | }
|
---|
[5736] | 77 |
|
---|
| 78 | protected override void OnModelChanged(EventArgs e) {
|
---|
| 79 | base.OnModelChanged(e);
|
---|
| 80 | RecalculateResults();
|
---|
| 81 | }
|
---|
| 82 |
|
---|
| 83 | private new void RecalculateResults() {
|
---|
| 84 | ModelLength = Model.SymbolicExpressionTree.Length;
|
---|
| 85 | ModelDepth = Model.SymbolicExpressionTree.Depth;
|
---|
| 86 | }
|
---|
[5624] | 87 | }
|
---|
| 88 | }
|
---|