Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SingleObjective/SymbolicClassificationSingleObjectiveValidationBestSolutionAnalyzer.cs @ 8694

Last change on this file since 8694 was 8664, checked in by mkommend, 12 years ago

#1951:

  • Added linear scaling parameter to data analysis problems.
  • Adapted interfaces, evaluators and analyzers accordingly.
  • Added OnlineBoundedMeanSquaredErrorCalculator.
  • Adapted symbolic regression sample unit test.
File size: 4.7 KB
RevLine 
[5685]1#region License Information
2/* HeuristicLab
[7259]3 * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
[5685]4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using HeuristicLab.Common;
23using HeuristicLab.Core;
24using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
25using HeuristicLab.Parameters;
26using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
27
28namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
29  /// <summary>
30  /// An operator that analyzes the validation best symbolic classification solution for single objective symbolic classification problems.
31  /// </summary>
32  [Item("SymbolicClassificationSingleObjectiveValidationBestSolutionAnalyzer", "An operator that analyzes the validation best symbolic classification solution for single objective symbolic classification problems.")]
33  [StorableClass]
[5720]34  public sealed class SymbolicClassificationSingleObjectiveValidationBestSolutionAnalyzer : SymbolicDataAnalysisSingleObjectiveValidationBestSolutionAnalyzer<ISymbolicClassificationSolution, ISymbolicClassificationSingleObjectiveEvaluator, IClassificationProblemData>,
[8594]35  ISymbolicDataAnalysisBoundedOperator, ISymbolicClassificationModelCreatorOperator {
[5770]36    private const string EstimationLimitsParameterName = "EstimationLimits";
[8594]37    private const string ModelCreatorParameterName = "ModelCreator";
[5720]38
39    #region parameter properties
[5770]40    public IValueLookupParameter<DoubleLimit> EstimationLimitsParameter {
41      get { return (IValueLookupParameter<DoubleLimit>)Parameters[EstimationLimitsParameterName]; }
[5720]42    }
[8594]43    public IValueLookupParameter<ISymbolicClassificationModelCreator> ModelCreatorParameter {
44      get { return (IValueLookupParameter<ISymbolicClassificationModelCreator>)Parameters[ModelCreatorParameterName]; }
45    }
46    ILookupParameter<ISymbolicClassificationModelCreator> ISymbolicClassificationModelCreatorOperator.ModelCreatorParameter {
47      get { return ModelCreatorParameter; }
48    }
[5720]49    #endregion
50
[5685]51    [StorableConstructor]
52    private SymbolicClassificationSingleObjectiveValidationBestSolutionAnalyzer(bool deserializing) : base(deserializing) { }
53    private SymbolicClassificationSingleObjectiveValidationBestSolutionAnalyzer(SymbolicClassificationSingleObjectiveValidationBestSolutionAnalyzer original, Cloner cloner) : base(original, cloner) { }
54    public SymbolicClassificationSingleObjectiveValidationBestSolutionAnalyzer()
55      : base() {
[5770]56      Parameters.Add(new ValueLookupParameter<DoubleLimit>(EstimationLimitsParameterName, "The lower and upper limit for the estimated values produced by the symbolic classification model."));
[8594]57      Parameters.Add(new ValueLookupParameter<ISymbolicClassificationModelCreator>(ModelCreatorParameterName, ""));
[5685]58    }
59    public override IDeepCloneable Clone(Cloner cloner) {
60      return new SymbolicClassificationSingleObjectiveValidationBestSolutionAnalyzer(this, cloner);
61    }
62
[8594]63    [StorableHook(HookType.AfterDeserialization)]
64    private void AfterDeserialization() {
65      if (!Parameters.ContainsKey(ModelCreatorParameterName))
66        Parameters.Add(new ValueLookupParameter<ISymbolicClassificationModelCreator>(ModelCreatorParameterName, ""));
67    }
68
[5685]69    protected override ISymbolicClassificationSolution CreateSolution(ISymbolicExpressionTree bestTree, double bestQuality) {
[8594]70      var model = ModelCreatorParameter.ActualValue.CreateSymbolicClassificationModel((ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper);
[8664]71      if (ApplyLinearScalingParameter.ActualValue.Value) SymbolicClassificationModel.Scale(model, ProblemDataParameter.ActualValue, ProblemDataParameter.ActualValue.TargetVariable);
[8531]72
[8594]73      model.RecalculateModelParameters(ProblemDataParameter.ActualValue, ProblemDataParameter.ActualValue.TrainingIndices);
74      return model.CreateClassificationSolution((IClassificationProblemData)ProblemDataParameter.ActualValue.Clone());
[5685]75    }
76  }
77}
Note: See TracBrowser for help on using the repository browser.