Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SingleObjective/SymbolicClassificationSingleObjectiveProblem.cs @ 8259

Last change on this file since 8259 was 8175, checked in by mkommend, 13 years ago

#1810: Corrected event registration for grammar configuration and updated samples.

File size: 6.2 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21using System.Linq;
22using HeuristicLab.Common;
23using HeuristicLab.Core;
24using HeuristicLab.Parameters;
25using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
26
27namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
28  [Item("Symbolic Classification Problem (single objective)", "Represents a single objective symbolic classfication problem.")]
29  [StorableClass]
30  [Creatable("Problems")]
31  public class SymbolicClassificationSingleObjectiveProblem : SymbolicDataAnalysisSingleObjectiveProblem<IClassificationProblemData, ISymbolicClassificationSingleObjectiveEvaluator, ISymbolicDataAnalysisSolutionCreator>, IClassificationProblem {
32    private const double PunishmentFactor = 10;
33    private const int InitialMaximumTreeDepth = 8;
34    private const int InitialMaximumTreeLength = 25;
35    private const string EstimationLimitsParameterName = "EstimationLimits";
36    private const string EstimationLimitsParameterDescription = "The lower and upper limit for the estimated value that can be returned by the symbolic classification model.";
37
38    #region parameter properties
39    public IFixedValueParameter<DoubleLimit> EstimationLimitsParameter {
40      get { return (IFixedValueParameter<DoubleLimit>)Parameters[EstimationLimitsParameterName]; }
41    }
42    #endregion
43    #region properties
44    public DoubleLimit EstimationLimits {
45      get { return EstimationLimitsParameter.Value; }
46    }
47    #endregion
48    [StorableConstructor]
49    protected SymbolicClassificationSingleObjectiveProblem(bool deserializing) : base(deserializing) { }
50    protected SymbolicClassificationSingleObjectiveProblem(SymbolicClassificationSingleObjectiveProblem original, Cloner cloner)
51      : base(original, cloner) {
52      RegisterEventHandlers();
53    }
54    public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicClassificationSingleObjectiveProblem(this, cloner); }
55
56    public SymbolicClassificationSingleObjectiveProblem()
57      : base(new ClassificationProblemData(), new SymbolicClassificationSingleObjectiveMeanSquaredErrorEvaluator(), new SymbolicDataAnalysisExpressionTreeCreator()) {
58      Parameters.Add(new FixedValueParameter<DoubleLimit>(EstimationLimitsParameterName, EstimationLimitsParameterDescription));
59
60      EstimationLimitsParameter.Hidden = true;
61
62      MaximumSymbolicExpressionTreeDepth.Value = InitialMaximumTreeDepth;
63      MaximumSymbolicExpressionTreeLength.Value = InitialMaximumTreeLength;
64
65      RegisterEventHandlers();
66      ConfigureGrammarSymbols();
67      InitializeOperators();
68      UpdateEstimationLimits();
69    }
70
71    [StorableHook(HookType.AfterDeserialization)]
72    private void AfterDeserialization() {
73      RegisterEventHandlers();
74      // compatibility
75      bool changed = false;
76      if (!Operators.OfType<SymbolicClassificationSingleObjectiveTrainingParetoBestSolutionAnalyzer>().Any()) {
77        Operators.Add(new SymbolicClassificationSingleObjectiveTrainingParetoBestSolutionAnalyzer());
78        changed = true;
79      }
80      if (!Operators.OfType<SymbolicClassificationSingleObjectiveValidationParetoBestSolutionAnalyzer>().Any()) {
81        Operators.Add(new SymbolicClassificationSingleObjectiveValidationParetoBestSolutionAnalyzer());
82        changed = true;
83      }
84      if (changed) ParameterizeOperators();
85    }
86
87    private void RegisterEventHandlers() {
88      SymbolicExpressionTreeGrammarParameter.ValueChanged += (o, e) => ConfigureGrammarSymbols();
89    }
90
91    private void ConfigureGrammarSymbols() {
92      var grammar = SymbolicExpressionTreeGrammar as TypeCoherentExpressionGrammar;
93      if (grammar != null) grammar.ConfigureAsDefaultClassificationGrammar();
94    }
95
96    private void InitializeOperators() {
97      Operators.Add(new SymbolicClassificationSingleObjectiveTrainingBestSolutionAnalyzer());
98      Operators.Add(new SymbolicClassificationSingleObjectiveValidationBestSolutionAnalyzer());
99      Operators.Add(new SymbolicClassificationSingleObjectiveOverfittingAnalyzer());
100      Operators.Add(new SymbolicClassificationSingleObjectiveTrainingParetoBestSolutionAnalyzer());
101      Operators.Add(new SymbolicClassificationSingleObjectiveValidationParetoBestSolutionAnalyzer());
102      ParameterizeOperators();
103    }
104
105    private void UpdateEstimationLimits() {
106      if (ProblemData.TrainingIndices.Any()) {
107        var targetValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices).ToList();
108        var mean = targetValues.Average();
109        var range = targetValues.Max() - targetValues.Min();
110        EstimationLimits.Upper = mean + PunishmentFactor * range;
111        EstimationLimits.Lower = mean - PunishmentFactor * range;
112      } else {
113        EstimationLimits.Upper = double.MaxValue;
114        EstimationLimits.Lower = double.MinValue;
115      }
116    }
117
118    protected override void OnProblemDataChanged() {
119      base.OnProblemDataChanged();
120      UpdateEstimationLimits();
121    }
122
123    protected override void ParameterizeOperators() {
124      base.ParameterizeOperators();
125      if (Parameters.ContainsKey(EstimationLimitsParameterName)) {
126        var operators = Parameters.OfType<IValueParameter>().Select(p => p.Value).OfType<IOperator>().Union(Operators);
127        foreach (var op in operators.OfType<ISymbolicDataAnalysisBoundedOperator>()) {
128          op.EstimationLimitsParameter.ActualName = EstimationLimitsParameter.Name;
129        }
130      }
131    }
132  }
133}
Note: See TracBrowser for help on using the repository browser.