Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SingleObjective/SymbolicClassificationSingleObjectiveProblem.cs @ 6089

Last change on this file since 6089 was 5854, checked in by mkommend, 14 years ago

#1418: Hid additional parameters of symbolic datanalysis problem.

File size: 5.0 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21using System.Linq;
22using HeuristicLab.Common;
23using HeuristicLab.Core;
24using HeuristicLab.Parameters;
25using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
26
27namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
28  [Item("Symbolic Classification Problem (single objective)", "Represents a single objective symbolic classfication problem.")]
29  [StorableClass]
30  [Creatable("Problems")]
31  public class SymbolicClassificationSingleObjectiveProblem : SymbolicDataAnalysisSingleObjectiveProblem<IClassificationProblemData, ISymbolicClassificationSingleObjectiveEvaluator, ISymbolicDataAnalysisSolutionCreator>, IClassificationProblem {
32    private const double PunishmentFactor = 10;
33    private const int InitialMaximumTreeDepth = 8;
34    private const int InitialMaximumTreeLength = 25;
35    private const string EstimationLimitsParameterName = "EstimationLimits";
36    private const string EstimationLimitsParameterDescription = "The lower and upper limit for the estimated value that can be returned by the symbolic classification model.";
37
38    #region parameter properties
39    public IFixedValueParameter<DoubleLimit> EstimationLimitsParameter {
40      get { return (IFixedValueParameter<DoubleLimit>)Parameters[EstimationLimitsParameterName]; }
41    }
42    #endregion
43    #region properties
44    public DoubleLimit EstimationLimits {
45      get { return EstimationLimitsParameter.Value; }
46    }
47    #endregion
48    [StorableConstructor]
49    protected SymbolicClassificationSingleObjectiveProblem(bool deserializing) : base(deserializing) { }
50    protected SymbolicClassificationSingleObjectiveProblem(SymbolicClassificationSingleObjectiveProblem original, Cloner cloner) : base(original, cloner) { }
51    public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicClassificationSingleObjectiveProblem(this, cloner); }
52
53    public SymbolicClassificationSingleObjectiveProblem()
54      : base(new ClassificationProblemData(), new SymbolicClassificationSingleObjectiveMeanSquaredErrorEvaluator(), new SymbolicDataAnalysisExpressionTreeCreator()) {
55      Parameters.Add(new FixedValueParameter<DoubleLimit>(EstimationLimitsParameterName, EstimationLimitsParameterDescription));
56
57      EstimationLimitsParameter.Hidden = true;
58
59      MaximumSymbolicExpressionTreeDepth.Value = InitialMaximumTreeDepth;
60      MaximumSymbolicExpressionTreeLength.Value = InitialMaximumTreeLength;
61
62      InitializeOperators();
63      UpdateEstimationLimits();
64    }
65
66    private void InitializeOperators() {
67      Operators.Add(new SymbolicClassificationSingleObjectiveTrainingBestSolutionAnalyzer());
68      Operators.Add(new SymbolicClassificationSingleObjectiveValidationBestSolutionAnalyzer());
69      Operators.Add(new SymbolicClassificationSingleObjectiveOverfittingAnalyzer());
70      ParameterizeOperators();
71    }
72
73    private void UpdateEstimationLimits() {
74      if (ProblemData.TrainingPartition.Start < ProblemData.TrainingPartition.End) {
75        var targetValues = ProblemData.Dataset.GetVariableValues(ProblemData.TargetVariable, ProblemData.TrainingPartition.Start, ProblemData.TrainingPartition.End);
76        var mean = targetValues.Average();
77        var range = targetValues.Max() - targetValues.Min();
78        EstimationLimits.Upper = mean + PunishmentFactor * range;
79        EstimationLimits.Lower = mean - PunishmentFactor * range;
80      }
81    }
82
83    protected override void OnProblemDataChanged() {
84      base.OnProblemDataChanged();
85      UpdateEstimationLimits();
86    }
87
88    protected override void ParameterizeOperators() {
89      base.ParameterizeOperators();
90      if (Parameters.ContainsKey(EstimationLimitsParameterName)) {
91        var operators = Parameters.OfType<IValueParameter>().Select(p => p.Value).OfType<IOperator>().Union(Operators);
92        foreach (var op in operators.OfType<ISymbolicDataAnalysisBoundedOperator>()) {
93          op.EstimationLimitsParameter.ActualName = EstimationLimitsParameter.Name;
94        }
95      }
96    }
97
98    public override void ImportProblemDataFromFile(string fileName) {
99      ClassificationProblemData problemData = ClassificationProblemData.ImportFromFile(fileName);
100      ProblemData = problemData;
101    }
102  }
103}
Note: See TracBrowser for help on using the repository browser.