Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SingleObjective/SymbolicClassificationSingleObjectivePearsonRSquaredEvaluator.cs @ 15557

Last change on this file since 15557 was 14185, checked in by swagner, 8 years ago

#2526: Updated year of copyrights in license headers

File size: 4.7 KB
RevLine 
[5500]1#region License Information
2/* HeuristicLab
[14185]3 * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
[5500]4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Collections.Generic;
23using HeuristicLab.Common;
24using HeuristicLab.Core;
25using HeuristicLab.Data;
26using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
27using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
28
[5501]29namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
30  [Item("Pearson R² evaluator", "Calculates the square of the pearson correlation coefficient (also known as coefficient of determination) of a symbolic classification solution.")]
[5500]31  [StorableClass]
[5501]32  public class SymbolicClassificationSingleObjectivePearsonRSquaredEvaluator : SymbolicClassificationSingleObjectiveEvaluator {
[5500]33    [StorableConstructor]
[5501]34    protected SymbolicClassificationSingleObjectivePearsonRSquaredEvaluator(bool deserializing) : base(deserializing) { }
35    protected SymbolicClassificationSingleObjectivePearsonRSquaredEvaluator(SymbolicClassificationSingleObjectivePearsonRSquaredEvaluator original, Cloner cloner)
[5500]36      : base(original, cloner) {
37    }
38    public override IDeepCloneable Clone(Cloner cloner) {
[5501]39      return new SymbolicClassificationSingleObjectivePearsonRSquaredEvaluator(this, cloner);
[5500]40    }
41
[5505]42    public SymbolicClassificationSingleObjectivePearsonRSquaredEvaluator() : base() { }
43
[5514]44    public override bool Maximization { get { return true; } }
45
[10291]46    public override IOperation InstrumentedApply() {
[5500]47      IEnumerable<int> rows = GenerateRowsToEvaluate();
[5851]48      var solution = SymbolicExpressionTreeParameter.ActualValue;
[8664]49      double quality = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, rows, ApplyLinearScalingParameter.ActualValue.Value);
[5500]50      QualityParameter.ActualValue = new DoubleValue(quality);
[10291]51      return base.InstrumentedApply();
[5500]52    }
53
[8664]54    public static double Calculate(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, IClassificationProblemData problemData, IEnumerable<int> rows, bool applyLinearScaling) {
[5500]55      IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows);
[8664]56      IEnumerable<double> targetValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows);
[5942]57      OnlineCalculatorError errorState;
[8664]58
[12641]59      double r;
[8664]60      if (applyLinearScaling) {
[12641]61        var rCalculator = new OnlinePearsonsRCalculator();
62        CalculateWithScaling(targetValues, estimatedValues, lowerEstimationLimit, upperEstimationLimit, rCalculator, problemData.Dataset.Rows);
63        errorState = rCalculator.ErrorState;
64        r = rCalculator.R;
[8664]65      } else {
66        IEnumerable<double> boundedEstimatedValues = estimatedValues.LimitToRange(lowerEstimationLimit, upperEstimationLimit);
[12641]67        r = OnlinePearsonsRCalculator.Calculate(targetValues, boundedEstimatedValues, out errorState);
[8664]68      }
69      if (errorState != OnlineCalculatorError.None) return double.NaN;
[12641]70      return r*r;
[5500]71    }
[5613]72
73    public override double Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, IClassificationProblemData problemData, IEnumerable<int> rows) {
[5722]74      SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context;
[5770]75      EstimationLimitsParameter.ExecutionContext = context;
[8664]76      ApplyLinearScalingParameter.ExecutionContext = context;
[5722]77
[8664]78      double r2 = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows, ApplyLinearScalingParameter.ActualValue.Value);
[5722]79
80      SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null;
[5770]81      EstimationLimitsParameter.ExecutionContext = null;
[8664]82      ApplyLinearScalingParameter.ExecutionContext = null;
[5722]83
84      return r2;
[5613]85    }
[5500]86  }
87}
Note: See TracBrowser for help on using the repository browser.