Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SingleObjective/SymbolicClassificationSingleObjectiveMeanSquaredErrorEvaluator.cs @ 7461

Last change on this file since 7461 was 7259, checked in by swagner, 13 years ago

Updated year of copyrights to 2012 (#1716)

File size: 4.1 KB
RevLine 
[5500]1#region License Information
2/* HeuristicLab
[7259]3 * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
[5500]4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Collections.Generic;
23using HeuristicLab.Common;
24using HeuristicLab.Core;
25using HeuristicLab.Data;
26using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
27using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
28
[5501]29namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
[5618]30  [Item("Mean squared error Evaluator", "Calculates the mean squared error of a symbolic classification solution.")]
[5500]31  [StorableClass]
[5501]32  public class SymbolicClassificationSingleObjectiveMeanSquaredErrorEvaluator : SymbolicClassificationSingleObjectiveEvaluator {
[5500]33    [StorableConstructor]
[5501]34    protected SymbolicClassificationSingleObjectiveMeanSquaredErrorEvaluator(bool deserializing) : base(deserializing) { }
35    protected SymbolicClassificationSingleObjectiveMeanSquaredErrorEvaluator(SymbolicClassificationSingleObjectiveMeanSquaredErrorEvaluator original, Cloner cloner)
[5500]36      : base(original, cloner) {
37    }
38    public override IDeepCloneable Clone(Cloner cloner) {
[5501]39      return new SymbolicClassificationSingleObjectiveMeanSquaredErrorEvaluator(this, cloner);
[5500]40    }
41
[5505]42    public SymbolicClassificationSingleObjectiveMeanSquaredErrorEvaluator() : base() { }
43
[5514]44    public override bool Maximization { get { return false; } }
45
[5500]46    public override IOperation Apply() {
47      IEnumerable<int> rows = GenerateRowsToEvaluate();
[5851]48      var solution = SymbolicExpressionTreeParameter.ActualValue;
49      double quality = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, solution, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, rows);
[5500]50      QualityParameter.ActualValue = new DoubleValue(quality);
51      return base.Apply();
52    }
53
[5624]54    public static double Calculate(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, IClassificationProblemData problemData, IEnumerable<int> rows) {
[5500]55      IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows);
[6740]56      IEnumerable<double> originalValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows);
[5547]57      IEnumerable<double> boundedEstimationValues = estimatedValues.LimitToRange(lowerEstimationLimit, upperEstimationLimit);
[5942]58      OnlineCalculatorError errorState;
59      double mse = OnlineMeanSquaredErrorCalculator.Calculate(originalValues, boundedEstimationValues, out errorState);
60      if (errorState != OnlineCalculatorError.None) return double.NaN;
[5894]61      else return mse;
[5500]62    }
[5613]63
64    public override double Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, IClassificationProblemData problemData, IEnumerable<int> rows) {
[5722]65      SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = context;
[5770]66      EstimationLimitsParameter.ExecutionContext = context;
[5747]67
[5770]68      double mse = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows);
[5722]69
70      SymbolicDataAnalysisTreeInterpreterParameter.ExecutionContext = null;
[5770]71      EstimationLimitsParameter.ExecutionContext = null;
[5722]72
73      return mse;
[5613]74    }
[5500]75  }
76}
Note: See TracBrowser for help on using the repository browser.