1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification.SingleObjective {
|
---|
32 | [Item("Bounded Mean squared error Evaluator", "Calculates the bounded mean squared error of a symbolic classification solution (estimations above or below the class values are only penaltilized linearly.")]
|
---|
33 | [StorableClass]
|
---|
34 | public class SymbolicClassificationSingleObjectiveBoundedMeanSquaredErrorEvaluator : SymbolicClassificationSingleObjectiveEvaluator {
|
---|
35 |
|
---|
36 | [StorableConstructor]
|
---|
37 | protected SymbolicClassificationSingleObjectiveBoundedMeanSquaredErrorEvaluator(bool deserializing) : base(deserializing) { }
|
---|
38 | protected SymbolicClassificationSingleObjectiveBoundedMeanSquaredErrorEvaluator(SymbolicClassificationSingleObjectiveBoundedMeanSquaredErrorEvaluator original, Cloner cloner) : base(original, cloner) { }
|
---|
39 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
40 | return new SymbolicClassificationSingleObjectiveBoundedMeanSquaredErrorEvaluator(this, cloner);
|
---|
41 | }
|
---|
42 |
|
---|
43 | public SymbolicClassificationSingleObjectiveBoundedMeanSquaredErrorEvaluator() : base() { }
|
---|
44 |
|
---|
45 | public override bool Maximization { get { return false; } }
|
---|
46 |
|
---|
47 | public override IOperation Apply() {
|
---|
48 | IEnumerable<int> rows = GenerateRowsToEvaluate();
|
---|
49 | double quality = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, SymbolicExpressionTreeParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, rows);
|
---|
50 | QualityParameter.ActualValue = new DoubleValue(quality);
|
---|
51 | return base.Apply();
|
---|
52 | }
|
---|
53 |
|
---|
54 | public static double Calculate(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, IClassificationProblemData problemData, IEnumerable<int> rows) {
|
---|
55 | IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows);
|
---|
56 | IEnumerable<double> originalValues = problemData.Dataset.GetEnumeratedVariableValues(problemData.TargetVariable, rows);
|
---|
57 | IEnumerable<double> boundedEstimationValues = estimatedValues.LimitToRange(lowerEstimationLimit, upperEstimationLimit);
|
---|
58 |
|
---|
59 | double minClassValue = problemData.ClassValues.OrderBy(x => x).First();
|
---|
60 | double maxClassValue = problemData.ClassValues.OrderBy(x => x).Last();
|
---|
61 |
|
---|
62 | IEnumerator<double> originalEnumerator = originalValues.GetEnumerator();
|
---|
63 | IEnumerator<double> estimatedEnumerator = estimatedValues.GetEnumerator();
|
---|
64 | OnlineMeanSquaredErrorEvaluator mseEvaluator = new OnlineMeanSquaredErrorEvaluator();
|
---|
65 | double errorSum = 0.0;
|
---|
66 | int n = 0;
|
---|
67 |
|
---|
68 | // always move forward both enumerators (do not use short-circuit evaluation!)
|
---|
69 | while (originalEnumerator.MoveNext() & estimatedEnumerator.MoveNext()) {
|
---|
70 | double estimated = estimatedEnumerator.Current;
|
---|
71 | double original = originalEnumerator.Current;
|
---|
72 | double error = estimated - original;
|
---|
73 |
|
---|
74 | if (estimated < minClassValue || estimated > maxClassValue)
|
---|
75 | errorSum += Math.Abs(error);
|
---|
76 | else
|
---|
77 | errorSum += Math.Pow(error, 2);
|
---|
78 | n++;
|
---|
79 | }
|
---|
80 |
|
---|
81 | // check if both enumerators are at the end to make sure both enumerations have the same length
|
---|
82 | if (estimatedEnumerator.MoveNext() || originalEnumerator.MoveNext()) {
|
---|
83 | throw new ArgumentException("Number of elements in first and second enumeration doesn't match.");
|
---|
84 | } else {
|
---|
85 | return errorSum / n;
|
---|
86 | }
|
---|
87 | }
|
---|
88 |
|
---|
89 | public override double Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, IClassificationProblemData problemData, IEnumerable<int> rows) {
|
---|
90 | return Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows);
|
---|
91 | }
|
---|
92 | }
|
---|
93 | }
|
---|