Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SingleObjective/SymbolicClassificationSingleObjectiveBoundedMeanSquaredErrorEvaluator.cs @ 5815

Last change on this file since 5815 was 5809, checked in by mkommend, 14 years ago

#1418: Reintegrated branch into trunk.

File size: 5.0 KB
RevLine 
[5630]1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Common;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
29using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
30
31namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification.SingleObjective {
32  [Item("Bounded Mean squared error Evaluator", "Calculates the bounded mean squared error of a symbolic classification solution (estimations above or below the class values are only penaltilized linearly.")]
33  [StorableClass]
[5747]34  public class SymbolicClassificationSingleObjectiveBoundedMeanSquaredErrorEvaluator : SymbolicClassificationSingleObjectiveEvaluator {
[5630]35
36    [StorableConstructor]
[5747]37    protected SymbolicClassificationSingleObjectiveBoundedMeanSquaredErrorEvaluator(bool deserializing) : base(deserializing) { }
38    protected SymbolicClassificationSingleObjectiveBoundedMeanSquaredErrorEvaluator(SymbolicClassificationSingleObjectiveBoundedMeanSquaredErrorEvaluator original, Cloner cloner) : base(original, cloner) { }
[5630]39    public override IDeepCloneable Clone(Cloner cloner) {
[5747]40      return new SymbolicClassificationSingleObjectiveBoundedMeanSquaredErrorEvaluator(this, cloner);
[5630]41    }
42
[5747]43    public SymbolicClassificationSingleObjectiveBoundedMeanSquaredErrorEvaluator() : base() { }
[5630]44
45    public override bool Maximization { get { return false; } }
46
47    public override IOperation Apply() {
48      IEnumerable<int> rows = GenerateRowsToEvaluate();
[5770]49      double quality = Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, SymbolicExpressionTreeParameter.ActualValue, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, ProblemDataParameter.ActualValue, rows);
[5630]50      QualityParameter.ActualValue = new DoubleValue(quality);
51      return base.Apply();
52    }
53
54    public static double Calculate(ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, ISymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, IClassificationProblemData problemData, IEnumerable<int> rows) {
55      IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows);
56      IEnumerable<double> originalValues = problemData.Dataset.GetEnumeratedVariableValues(problemData.TargetVariable, rows);
57      IEnumerable<double> boundedEstimationValues = estimatedValues.LimitToRange(lowerEstimationLimit, upperEstimationLimit);
58
59      double minClassValue = problemData.ClassValues.OrderBy(x => x).First();
60      double maxClassValue = problemData.ClassValues.OrderBy(x => x).Last();
61
62      IEnumerator<double> originalEnumerator = originalValues.GetEnumerator();
63      IEnumerator<double> estimatedEnumerator = estimatedValues.GetEnumerator();
64      OnlineMeanSquaredErrorEvaluator mseEvaluator = new OnlineMeanSquaredErrorEvaluator();
65      double errorSum = 0.0;
66      int n = 0;
67
68      // always move forward both enumerators (do not use short-circuit evaluation!)
69      while (originalEnumerator.MoveNext() & estimatedEnumerator.MoveNext()) {
70        double estimated = estimatedEnumerator.Current;
71        double original = originalEnumerator.Current;
72        double error = estimated - original;
73
74        if (estimated < minClassValue || estimated > maxClassValue)
75          errorSum += Math.Abs(error);
76        else
77          errorSum += Math.Pow(error, 2);
78        n++;
79      }
80
81      // check if both enumerators are at the end to make sure both enumerations have the same length
82      if (estimatedEnumerator.MoveNext() || originalEnumerator.MoveNext()) {
83        throw new ArgumentException("Number of elements in first and second enumeration doesn't match.");
84      } else {
85        return errorSum / n;
86      }
87    }
88
89    public override double Evaluate(IExecutionContext context, ISymbolicExpressionTree tree, IClassificationProblemData problemData, IEnumerable<int> rows) {
[5770]90      return Calculate(SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, tree, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper, problemData, rows);
[5630]91    }
92  }
93}
Note: See TracBrowser for help on using the repository browser.