Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/MultiObjective/SymbolicClassificationMultiObjectiveProblem.cs @ 8471

Last change on this file since 8471 was 8175, checked in by mkommend, 13 years ago

#1810: Corrected event registration for grammar configuration and updated samples.

File size: 5.4 KB
RevLine 
[5618]1#region License Information
2/* HeuristicLab
[7259]3 * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
[5618]4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21using System.Linq;
22using HeuristicLab.Common;
23using HeuristicLab.Core;
[5623]24using HeuristicLab.Data;
[5716]25using HeuristicLab.Parameters;
[5618]26using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
27
28namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
29  [Item("Symbolic Classification Problem (multi objective)", "Represents a multi objective symbolic classfication problem.")]
30  [StorableClass]
31  [Creatable("Problems")]
[5733]32  public class SymbolicClassificationMultiObjectiveProblem : SymbolicDataAnalysisMultiObjectiveProblem<IClassificationProblemData, ISymbolicClassificationMultiObjectiveEvaluator, ISymbolicDataAnalysisSolutionCreator>, IClassificationProblem {
[5618]33    private const double PunishmentFactor = 10;
[5685]34    private const int InitialMaximumTreeDepth = 8;
35    private const int InitialMaximumTreeLength = 25;
[5770]36    private const string EstimationLimitsParameterName = "EstimationLimits";
37    private const string EstimationLimitsParameterDescription = "The lower and upper limit for the estimated value that can be returned by the symbolic classification model.";
[5618]38
[5685]39    #region parameter properties
[5770]40    public IFixedValueParameter<DoubleLimit> EstimationLimitsParameter {
41      get { return (IFixedValueParameter<DoubleLimit>)Parameters[EstimationLimitsParameterName]; }
[5685]42    }
43    #endregion
44    #region properties
[5770]45    public DoubleLimit EstimationLimits {
46      get { return EstimationLimitsParameter.Value; }
[5685]47    }
48    #endregion
[5618]49    [StorableConstructor]
50    protected SymbolicClassificationMultiObjectiveProblem(bool deserializing) : base(deserializing) { }
[8175]51    protected SymbolicClassificationMultiObjectiveProblem(SymbolicClassificationMultiObjectiveProblem original, Cloner cloner)
52      : base(original, cloner) {
53      RegisterEventHandlers();
54    }
[5618]55    public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicClassificationMultiObjectiveProblem(this, cloner); }
56
57    public SymbolicClassificationMultiObjectiveProblem()
58      : base(new ClassificationProblemData(), new SymbolicClassificationMultiObjectiveMeanSquaredErrorTreeSizeEvaluator(), new SymbolicDataAnalysisExpressionTreeCreator()) {
[5847]59      Parameters.Add(new FixedValueParameter<DoubleLimit>(EstimationLimitsParameterName, EstimationLimitsParameterDescription));
[5685]60
[5854]61      EstimationLimitsParameter.Hidden = true;
62
[5623]63      Maximization = new BoolArray(new bool[] { false, false });
[5685]64      MaximumSymbolicExpressionTreeDepth.Value = InitialMaximumTreeDepth;
65      MaximumSymbolicExpressionTreeLength.Value = InitialMaximumTreeLength;
66
[6803]67
[8175]68      RegisterEventHandlers();
[6803]69      ConfigureGrammarSymbols();
[5685]70      InitializeOperators();
[5716]71      UpdateEstimationLimits();
[5618]72    }
73
[8175]74    [StorableHook(HookType.AfterDeserialization)]
75    private void AfterDeserialization() {
76      RegisterEventHandlers();
77    }
78
79    private void RegisterEventHandlers() {
80      SymbolicExpressionTreeGrammarParameter.ValueChanged += (o, e) => ConfigureGrammarSymbols();
81    }
82
[6803]83    private void ConfigureGrammarSymbols() {
84      var grammar = SymbolicExpressionTreeGrammar as TypeCoherentExpressionGrammar;
85      if (grammar != null) grammar.ConfigureAsDefaultClassificationGrammar();
86    }
87
[5685]88    private void InitializeOperators() {
89      Operators.Add(new SymbolicClassificationMultiObjectiveTrainingBestSolutionAnalyzer());
90      Operators.Add(new SymbolicClassificationMultiObjectiveValidationBestSolutionAnalyzer());
91      ParameterizeOperators();
92    }
93
94    private void UpdateEstimationLimits() {
[8139]95      if (ProblemData.TrainingIndices.Any()) {
96        var targetValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices).ToList();
[5618]97        var mean = targetValues.Average();
98        var range = targetValues.Max() - targetValues.Min();
[5770]99        EstimationLimits.Upper = mean + PunishmentFactor * range;
100        EstimationLimits.Lower = mean - PunishmentFactor * range;
[6754]101      } else {
102        EstimationLimits.Upper = double.MaxValue;
103        EstimationLimits.Lower = double.MinValue;
[5618]104      }
105    }
[5623]106
[5685]107    protected override void OnProblemDataChanged() {
108      base.OnProblemDataChanged();
109      UpdateEstimationLimits();
110    }
111
112    protected new void ParameterizeOperators() {
113      base.ParameterizeOperators();
[5770]114      if (Parameters.ContainsKey(EstimationLimitsParameterName)) {
115        var operators = Parameters.OfType<IValueParameter>().Select(p => p.Value).OfType<IOperator>().Union(Operators);
116        foreach (var op in operators.OfType<ISymbolicDataAnalysisBoundedOperator>()) {
117          op.EstimationLimitsParameter.ActualName = EstimationLimitsParameterName;
118        }
[5685]119      }
120    }
[5618]121  }
122}
Note: See TracBrowser for help on using the repository browser.