Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification.Views/3.4/InteractiveSymbolicClassificationSolutionSimplifierViewBase.cs @ 8899

Last change on this file since 8899 was 8727, checked in by mkommend, 12 years ago

#1965: Used EstimationLimits to avoid NaN evaluations in simplifiers.

File size: 6.6 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Common;
26using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
27using HeuristicLab.Problems.DataAnalysis.Symbolic.Views;
28
29namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification.Views {
30  public abstract partial class InteractiveSymbolicClassificationSolutionSimplifierViewBase : InteractiveSymbolicDataAnalysisSolutionSimplifierView {
31    private readonly ConstantTreeNode constantNode;
32    private readonly SymbolicExpressionTree tempTree;
33
34    public new ISymbolicClassificationSolution Content {
35      get { return (ISymbolicClassificationSolution)base.Content; }
36      set { base.Content = value; }
37    }
38
39    public InteractiveSymbolicClassificationSolutionSimplifierViewBase()
40      : base() {
41      InitializeComponent();
42      this.Caption = "Interactive Classification Solution Simplifier";
43
44      constantNode = ((ConstantTreeNode)new Constant().CreateTreeNode());
45      ISymbolicExpressionTreeNode root = new ProgramRootSymbol().CreateTreeNode();
46      ISymbolicExpressionTreeNode start = new StartSymbol().CreateTreeNode();
47      root.AddSubtree(start);
48      tempTree = new SymbolicExpressionTree(root);
49    }
50
51    /// <summary>
52    /// It is necessary to create new models of an unknown type with new trees in the simplifier.
53    /// For this purpose the cloner is used by registering the new tree as already cloned object and invoking the clone mechanism.
54    /// This results in a new model of the same type as the old one with an exchanged tree.
55    /// </summary>
56    /// <param name="tree">The new tree that should be included in the new object</param>
57    /// <returns></returns>
58    protected ISymbolicClassificationModel CreateModel(ISymbolicExpressionTree tree) {
59      var cloner = new Cloner();
60      cloner.RegisterClonedObject(Content.Model.SymbolicExpressionTree, tree);
61
62      var model = (ISymbolicClassificationModel)Content.Model.Clone(cloner);
63      model.RecalculateModelParameters(Content.ProblemData, Content.ProblemData.TrainingIndices);
64      return model;
65    }
66
67    protected override Dictionary<ISymbolicExpressionTreeNode, double> CalculateReplacementValues(ISymbolicExpressionTree tree) {
68      Dictionary<ISymbolicExpressionTreeNode, double> replacementValues = new Dictionary<ISymbolicExpressionTreeNode, double>();
69      foreach (ISymbolicExpressionTreeNode node in tree.Root.GetSubtree(0).GetSubtree(0).IterateNodesPrefix()) {
70        replacementValues[node] = CalculateReplacementValue(node, tree);
71      }
72      return replacementValues;
73    }
74
75    protected override Dictionary<ISymbolicExpressionTreeNode, double> CalculateImpactValues(ISymbolicExpressionTree tree) {
76      var model = Content.Model;
77      var dataset = Content.ProblemData.Dataset;
78      var rows = Content.ProblemData.TrainingIndices;
79      string targetVariable = Content.ProblemData.TargetVariable;
80      Dictionary<ISymbolicExpressionTreeNode, double> impactValues = new Dictionary<ISymbolicExpressionTreeNode, double>();
81      List<ISymbolicExpressionTreeNode> nodes = tree.Root.GetSubtree(0).GetSubtree(0).IterateNodesPostfix().ToList();
82
83      var targetClassValues = dataset.GetDoubleValues(targetVariable, rows);
84      var originalClassValues = model.GetEstimatedClassValues(dataset, rows);
85      OnlineCalculatorError errorState;
86      double originalAccuracy = OnlineAccuracyCalculator.Calculate(targetClassValues, originalClassValues, out errorState);
87      if (errorState != OnlineCalculatorError.None) originalAccuracy = 0.0;
88
89      foreach (ISymbolicExpressionTreeNode node in nodes) {
90        var parent = node.Parent;
91        constantNode.Value = CalculateReplacementValue(node, tree);
92        ISymbolicExpressionTreeNode replacementNode = constantNode;
93        SwitchNode(parent, node, replacementNode);
94        var newModel = CreateModel(tree);
95        var newClassValues = newModel.GetEstimatedClassValues(dataset, rows);
96        double newAccuracy = OnlineAccuracyCalculator.Calculate(targetClassValues, newClassValues, out errorState);
97        if (errorState != OnlineCalculatorError.None) newAccuracy = 0.0;
98
99        // impact = 0 if no change
100        // impact < 0 if new solution is better
101        // impact > 0 if new solution is worse
102        impactValues[node] = originalAccuracy - newAccuracy;
103        SwitchNode(parent, replacementNode, node);
104      }
105      return impactValues;
106    }
107
108    private double CalculateReplacementValue(ISymbolicExpressionTreeNode node, ISymbolicExpressionTree sourceTree) {
109      // remove old ADFs
110      while (tempTree.Root.SubtreeCount > 1) tempTree.Root.RemoveSubtree(1);
111      // clone ADFs of source tree
112      for (int i = 1; i < sourceTree.Root.SubtreeCount; i++) {
113        tempTree.Root.AddSubtree((ISymbolicExpressionTreeNode)sourceTree.Root.GetSubtree(i).Clone());
114      }
115      var start = tempTree.Root.GetSubtree(0);
116      while (start.SubtreeCount > 0) start.RemoveSubtree(0);
117      start.AddSubtree((ISymbolicExpressionTreeNode)node.Clone());
118      var interpreter = Content.Model.Interpreter;
119      var rows = Content.ProblemData.TrainingIndices;
120      return interpreter.GetSymbolicExpressionTreeValues(tempTree, Content.ProblemData.Dataset, rows)
121             .LimitToRange(Content.Model.LowerEstimationLimit, Content.Model.UpperEstimationLimit).Median();
122    }
123
124
125    private void SwitchNode(ISymbolicExpressionTreeNode root, ISymbolicExpressionTreeNode oldBranch, ISymbolicExpressionTreeNode newBranch) {
126      for (int i = 0; i < root.SubtreeCount; i++) {
127        if (root.GetSubtree(i) == oldBranch) {
128          root.RemoveSubtree(i);
129          root.InsertSubtree(i, newBranch);
130          return;
131        }
132      }
133    }
134
135    protected override void btnOptimizeConstants_Click(object sender, EventArgs e) {
136
137    }
138  }
139}
Note: See TracBrowser for help on using the repository browser.