1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Drawing;
|
---|
25 | using System.Linq;
|
---|
26 | using HeuristicLab.Common;
|
---|
27 | using HeuristicLab.Core;
|
---|
28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
30 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols;
|
---|
31 |
|
---|
32 | namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic {
|
---|
33 | /// <summary>
|
---|
34 | /// Represents a solution for a symbolic regression problem which can be visualized in the GUI.
|
---|
35 | /// </summary>
|
---|
36 | [Item("SymbolicRegressionSolution", "Represents a solution for a symbolic regression problem which can be visualized in the GUI.")]
|
---|
37 | [StorableClass]
|
---|
38 | public class SymbolicRegressionSolution : DataAnalysisSolution {
|
---|
39 | public override Image ItemImage {
|
---|
40 | get { return HeuristicLab.Common.Resources.VSImageLibrary.Function; }
|
---|
41 | }
|
---|
42 |
|
---|
43 | public new SymbolicRegressionModel Model {
|
---|
44 | get { return (SymbolicRegressionModel)base.Model; }
|
---|
45 | set { base.Model = value; }
|
---|
46 | }
|
---|
47 |
|
---|
48 | protected List<double> estimatedValues;
|
---|
49 | public override IEnumerable<double> EstimatedValues {
|
---|
50 | get {
|
---|
51 | if (estimatedValues == null) RecalculateEstimatedValues();
|
---|
52 | return estimatedValues;
|
---|
53 | }
|
---|
54 | }
|
---|
55 |
|
---|
56 | public override IEnumerable<double> EstimatedTrainingValues {
|
---|
57 | get { return GetEstimatedValues(ProblemData.TrainingIndizes); }
|
---|
58 | }
|
---|
59 |
|
---|
60 | public override IEnumerable<double> EstimatedTestValues {
|
---|
61 | get { return GetEstimatedValues(ProblemData.TestIndizes); }
|
---|
62 | }
|
---|
63 |
|
---|
64 | [StorableConstructor]
|
---|
65 | protected SymbolicRegressionSolution(bool deserializing) : base(deserializing) { }
|
---|
66 | protected SymbolicRegressionSolution(SymbolicRegressionSolution original, Cloner cloner)
|
---|
67 | : base(original, cloner) {
|
---|
68 | }
|
---|
69 | public SymbolicRegressionSolution(DataAnalysisProblemData problemData, SymbolicRegressionModel model, double lowerEstimationLimit, double upperEstimationLimit)
|
---|
70 | : base(problemData, lowerEstimationLimit, upperEstimationLimit) {
|
---|
71 | this.Model = model;
|
---|
72 | }
|
---|
73 |
|
---|
74 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
75 | return new SymbolicRegressionSolution(this, cloner);
|
---|
76 | }
|
---|
77 |
|
---|
78 | protected override void RecalculateEstimatedValues() {
|
---|
79 | int minLag = GetMinimumLagFromTree(Model.SymbolicExpressionTree.Root);
|
---|
80 | IEnumerable<double> calculatedValues =
|
---|
81 | from x in Model.GetEstimatedValues(ProblemData, 0 - minLag, ProblemData.Dataset.Rows)
|
---|
82 | let boundedX = Math.Min(UpperEstimationLimit, Math.Max(LowerEstimationLimit, x))
|
---|
83 | select double.IsNaN(boundedX) ? UpperEstimationLimit : boundedX;
|
---|
84 | estimatedValues = Enumerable.Repeat(UpperEstimationLimit, Math.Abs(minLag)).Concat(calculatedValues).ToList();
|
---|
85 | OnEstimatedValuesChanged();
|
---|
86 | }
|
---|
87 |
|
---|
88 | public virtual IEnumerable<double> GetEstimatedValues(IEnumerable<int> rows) {
|
---|
89 | if (estimatedValues == null) RecalculateEstimatedValues();
|
---|
90 | foreach (int row in rows)
|
---|
91 | yield return estimatedValues[row];
|
---|
92 | }
|
---|
93 |
|
---|
94 | protected int GetMinimumLagFromTree(SymbolicExpressionTreeNode node) {
|
---|
95 | if (node == null) return 0;
|
---|
96 | int lag = 0;
|
---|
97 |
|
---|
98 | var laggedTreeNode = node as ILaggedTreeNode;
|
---|
99 | if (laggedTreeNode != null) lag += laggedTreeNode.Lag;
|
---|
100 | else if (node.Symbol is Derivative) lag -= 4;
|
---|
101 |
|
---|
102 | int subtreeLag = 0;
|
---|
103 | foreach (var subtree in node.SubTrees) {
|
---|
104 | subtreeLag = Math.Min(subtreeLag, GetMinimumLagFromTree(subtree));
|
---|
105 | }
|
---|
106 | return lag + subtreeLag;
|
---|
107 | }
|
---|
108 | }
|
---|
109 | }
|
---|