Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Problems.DataAnalysis.Regression/3.3/Symbolic/SymbolicRegressionSolution.cs @ 4681

Last change on this file since 4681 was 4468, checked in by mkommend, 14 years ago

Preparation for cross validation - removed the test samples from the trainining samples and added ValidationPercentage parameter (ticket #1199).

File size: 3.6 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Drawing;
25using System.Linq;
26using HeuristicLab.Core;
27using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
28using HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols;
29
30namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic {
31  /// <summary>
32  /// Represents a solution for a symbolic regression problem which can be visualized in the GUI.
33  /// </summary>
34  [Item("SymbolicRegressionSolution", "Represents a solution for a symbolic regression problem which can be visualized in the GUI.")]
35  [StorableClass]
36  public class SymbolicRegressionSolution : DataAnalysisSolution {
37    public SymbolicRegressionSolution() : base() { }
38    public SymbolicRegressionSolution(DataAnalysisProblemData problemData, SymbolicRegressionModel model, double lowerEstimationLimit, double upperEstimationLimit)
39      : base(problemData, lowerEstimationLimit, upperEstimationLimit) {
40      this.Model = model;
41    }
42
43    public override Image ItemImage {
44      get { return HeuristicLab.Common.Resources.VS2008ImageLibrary.Function; }
45    }
46
47    public new SymbolicRegressionModel Model {
48      get { return (SymbolicRegressionModel)base.Model; }
49      set { base.Model = value; }
50    }
51
52    protected override void RecalculateEstimatedValues() {
53      int minLag = 0;
54      var laggedTreeNodes = Model.SymbolicExpressionTree.IterateNodesPrefix().OfType<LaggedVariableTreeNode>();
55      if (laggedTreeNodes.Any())
56        minLag = laggedTreeNodes.Min(node => node.Lag);
57      IEnumerable<double> calculatedValues =
58          from x in Model.GetEstimatedValues(ProblemData, 0 - minLag, ProblemData.Dataset.Rows)
59          let boundedX = Math.Min(UpperEstimationLimit, Math.Max(LowerEstimationLimit, x))
60          select double.IsNaN(boundedX) ? UpperEstimationLimit : boundedX;
61      estimatedValues = Enumerable.Repeat(double.NaN, Math.Abs(minLag)).Concat(calculatedValues).ToList();
62      OnEstimatedValuesChanged();
63    }
64
65    protected List<double> estimatedValues;
66    public override IEnumerable<double> EstimatedValues {
67      get {
68        if (estimatedValues == null) RecalculateEstimatedValues();
69        return estimatedValues;
70      }
71    }
72
73    public override IEnumerable<double> EstimatedTrainingValues {
74      get { return GetEstimatedValues(ProblemData.TrainingIndizes); }
75    }
76
77    public override IEnumerable<double> EstimatedTestValues {
78      get { return GetEstimatedValues(ProblemData.TestIndizes); }
79    }
80
81    public virtual IEnumerable<double> GetEstimatedValues(IEnumerable<int> rows) {
82      if (estimatedValues == null) RecalculateEstimatedValues();
83      foreach (int row in rows)
84        yield return estimatedValues[row];
85    }
86  }
87}
Note: See TracBrowser for help on using the repository browser.