Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Problems.DataAnalysis.Regression/3.3/Symbolic/SymbolicRegressionSolution.cs @ 3480

Last change on this file since 3480 was 3462, checked in by gkronber, 15 years ago

Refactored symbolic expression tree encoding and problem classes for symbolic regression. #937 , #938

File size: 3.4 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using HeuristicLab.Common;
24using HeuristicLab.Core;
25using HeuristicLab.Data;
26using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
27using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
28using System.Collections.Generic;
29using System.Linq;
30
31namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic {
32  /// <summary>
33  /// Represents a solution for a symbolic regression problem which can be visualized in the GUI.
34  /// </summary>
35  [Item("SymbolicRegressionSolution", "Represents a solution for a symbolic regression problem which can be visualized in the GUI.")]
36  [StorableClass]
37  public sealed class SymbolicRegressionSolution : DataAnalysisSolution {
38    private SymbolicRegressionModel model;
39    public SymbolicRegressionModel Model {
40      get { return model; }
41      set {
42        if (model != value) {
43          if (value == null) throw new ArgumentNullException();
44          model = value;
45          OnModelChanged(EventArgs.Empty);
46        }
47      }
48    }
49
50    public SymbolicRegressionSolution() : base() { }
51    public SymbolicRegressionSolution(DataAnalysisProblemData problemData, SymbolicRegressionModel model)
52      : base(problemData) {
53      this.model = model;
54      RecalculateEstimatedValues();
55    }
56
57    public event EventHandler ModelChanged;
58    private void OnModelChanged(EventArgs e) {
59      RecalculateEstimatedValues();
60      var listeners = ModelChanged;
61      if (listeners != null)
62        listeners(this, e);
63    }
64
65    protected override void OnProblemDataChanged(EventArgs e) {
66      RecalculateEstimatedValues();
67    }
68
69    private void RecalculateEstimatedValues() {
70      estimatedValues = model.GetEstimatedValues(ProblemData.Dataset, 0, ProblemData.Dataset.Rows).ToList();
71      OnEstimatedValuesChanged(EventArgs.Empty);
72    }
73
74    private List<double> estimatedValues;
75    public override IEnumerable<double> EstimatedValues {
76      get {
77        return estimatedValues.AsEnumerable();
78      }
79    }
80
81    public override IEnumerable<double> EstimatedTrainingValues {
82      get {
83        int start = ProblemData.TrainingSamplesStart.Value;
84        int n = ProblemData.TrainingSamplesEnd.Value - start;
85        return estimatedValues.Skip(start).Take(n).ToList();
86      }
87    }
88
89    public override IEnumerable<double> EstimatedTestValues {
90      get {
91        int start = ProblemData.TestSamplesStart.Value;
92        int n = ProblemData.TestSamplesEnd.Value - start;
93        return estimatedValues.Skip(start).Take(n).ToList();
94      }
95    }
96  }
97}
Note: See TracBrowser for help on using the repository browser.