1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Drawing;
|
---|
25 | using System.Linq;
|
---|
26 | using HeuristicLab.Common;
|
---|
27 | using HeuristicLab.Core;
|
---|
28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
29 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic {
|
---|
32 | /// <summary>
|
---|
33 | /// Represents a solution for a symbolic regression problem which can be visualized in the GUI.
|
---|
34 | /// </summary>
|
---|
35 | [Item("SymbolicRegressionSolution", "Represents a solution for a symbolic regression problem which can be visualized in the GUI.")]
|
---|
36 | [StorableClass]
|
---|
37 | public class SymbolicRegressionSolution : DataAnalysisSolution {
|
---|
38 | public override Image ItemImage {
|
---|
39 | get { return HeuristicLab.Common.Resources.VSImageLibrary.Function; }
|
---|
40 | }
|
---|
41 |
|
---|
42 | public new SymbolicRegressionModel Model {
|
---|
43 | get { return (SymbolicRegressionModel)base.Model; }
|
---|
44 | set { base.Model = value; }
|
---|
45 | }
|
---|
46 |
|
---|
47 | protected List<double> estimatedValues;
|
---|
48 | public override IEnumerable<double> EstimatedValues {
|
---|
49 | get {
|
---|
50 | if (estimatedValues == null) RecalculateEstimatedValues();
|
---|
51 | return estimatedValues;
|
---|
52 | }
|
---|
53 | }
|
---|
54 |
|
---|
55 | public override IEnumerable<double> EstimatedTrainingValues {
|
---|
56 | get { return GetEstimatedValues(ProblemData.TrainingIndizes); }
|
---|
57 | }
|
---|
58 |
|
---|
59 | public override IEnumerable<double> EstimatedTestValues {
|
---|
60 | get { return GetEstimatedValues(ProblemData.TestIndizes); }
|
---|
61 | }
|
---|
62 |
|
---|
63 | [StorableConstructor]
|
---|
64 | protected SymbolicRegressionSolution(bool deserializing) : base(deserializing) { }
|
---|
65 | protected SymbolicRegressionSolution(SymbolicRegressionSolution original, Cloner cloner)
|
---|
66 | : base(original, cloner) {
|
---|
67 | }
|
---|
68 | public SymbolicRegressionSolution(DataAnalysisProblemData problemData, SymbolicRegressionModel model, double lowerEstimationLimit, double upperEstimationLimit)
|
---|
69 | : base(problemData, lowerEstimationLimit, upperEstimationLimit) {
|
---|
70 | this.Model = model;
|
---|
71 | }
|
---|
72 |
|
---|
73 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
74 | return new SymbolicRegressionSolution(this, cloner);
|
---|
75 | }
|
---|
76 |
|
---|
77 | protected override void RecalculateEstimatedValues() {
|
---|
78 | int minLag = 0;
|
---|
79 | var laggedTreeNodes = Model.SymbolicExpressionTree.IterateNodesPrefix().OfType<LaggedVariableTreeNode>();
|
---|
80 | if (laggedTreeNodes.Any())
|
---|
81 | minLag = laggedTreeNodes.Min(node => node.Lag);
|
---|
82 | IEnumerable<double> calculatedValues =
|
---|
83 | from x in Model.GetEstimatedValues(ProblemData, 0 - minLag, ProblemData.Dataset.Rows)
|
---|
84 | let boundedX = Math.Min(UpperEstimationLimit, Math.Max(LowerEstimationLimit, x))
|
---|
85 | select double.IsNaN(boundedX) ? UpperEstimationLimit : boundedX;
|
---|
86 | estimatedValues = Enumerable.Repeat(UpperEstimationLimit, Math.Abs(minLag)).Concat(calculatedValues).ToList();
|
---|
87 | OnEstimatedValuesChanged();
|
---|
88 | }
|
---|
89 |
|
---|
90 | public virtual IEnumerable<double> GetEstimatedValues(IEnumerable<int> rows) {
|
---|
91 | if (estimatedValues == null) RecalculateEstimatedValues();
|
---|
92 | foreach (int row in rows)
|
---|
93 | yield return estimatedValues[row];
|
---|
94 | }
|
---|
95 | }
|
---|
96 | }
|
---|