[3442] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
[4068] | 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Drawing;
|
---|
| 25 | using System.Linq;
|
---|
[4722] | 26 | using HeuristicLab.Common;
|
---|
[3442] | 27 | using HeuristicLab.Core;
|
---|
| 28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
[4250] | 29 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols;
|
---|
[3442] | 30 |
|
---|
| 31 | namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic {
|
---|
| 32 | /// <summary>
|
---|
| 33 | /// Represents a solution for a symbolic regression problem which can be visualized in the GUI.
|
---|
| 34 | /// </summary>
|
---|
| 35 | [Item("SymbolicRegressionSolution", "Represents a solution for a symbolic regression problem which can be visualized in the GUI.")]
|
---|
| 36 | [StorableClass]
|
---|
[4415] | 37 | public class SymbolicRegressionSolution : DataAnalysisSolution {
|
---|
[3884] | 38 | public override Image ItemImage {
|
---|
[5287] | 39 | get { return HeuristicLab.Common.Resources.VSImageLibrary.Function; }
|
---|
[3462] | 40 | }
|
---|
| 41 |
|
---|
[3884] | 42 | public new SymbolicRegressionModel Model {
|
---|
| 43 | get { return (SymbolicRegressionModel)base.Model; }
|
---|
| 44 | set { base.Model = value; }
|
---|
[3462] | 45 | }
|
---|
| 46 |
|
---|
[4415] | 47 | protected List<double> estimatedValues;
|
---|
[3462] | 48 | public override IEnumerable<double> EstimatedValues {
|
---|
| 49 | get {
|
---|
[3485] | 50 | if (estimatedValues == null) RecalculateEstimatedValues();
|
---|
[4468] | 51 | return estimatedValues;
|
---|
[3462] | 52 | }
|
---|
| 53 | }
|
---|
| 54 |
|
---|
| 55 | public override IEnumerable<double> EstimatedTrainingValues {
|
---|
[4468] | 56 | get { return GetEstimatedValues(ProblemData.TrainingIndizes); }
|
---|
[3462] | 57 | }
|
---|
| 58 |
|
---|
| 59 | public override IEnumerable<double> EstimatedTestValues {
|
---|
[4468] | 60 | get { return GetEstimatedValues(ProblemData.TestIndizes); }
|
---|
[3462] | 61 | }
|
---|
[4468] | 62 |
|
---|
[4722] | 63 | [StorableConstructor]
|
---|
| 64 | protected SymbolicRegressionSolution(bool deserializing) : base(deserializing) { }
|
---|
| 65 | protected SymbolicRegressionSolution(SymbolicRegressionSolution original, Cloner cloner)
|
---|
| 66 | : base(original, cloner) {
|
---|
| 67 | }
|
---|
| 68 | public SymbolicRegressionSolution(DataAnalysisProblemData problemData, SymbolicRegressionModel model, double lowerEstimationLimit, double upperEstimationLimit)
|
---|
| 69 | : base(problemData, lowerEstimationLimit, upperEstimationLimit) {
|
---|
| 70 | this.Model = model;
|
---|
| 71 | }
|
---|
| 72 |
|
---|
| 73 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 74 | return new SymbolicRegressionSolution(this, cloner);
|
---|
| 75 | }
|
---|
| 76 |
|
---|
| 77 | protected override void RecalculateEstimatedValues() {
|
---|
| 78 | int minLag = 0;
|
---|
| 79 | var laggedTreeNodes = Model.SymbolicExpressionTree.IterateNodesPrefix().OfType<LaggedVariableTreeNode>();
|
---|
| 80 | if (laggedTreeNodes.Any())
|
---|
| 81 | minLag = laggedTreeNodes.Min(node => node.Lag);
|
---|
| 82 | IEnumerable<double> calculatedValues =
|
---|
| 83 | from x in Model.GetEstimatedValues(ProblemData, 0 - minLag, ProblemData.Dataset.Rows)
|
---|
| 84 | let boundedX = Math.Min(UpperEstimationLimit, Math.Max(LowerEstimationLimit, x))
|
---|
| 85 | select double.IsNaN(boundedX) ? UpperEstimationLimit : boundedX;
|
---|
[4797] | 86 | estimatedValues = Enumerable.Repeat(UpperEstimationLimit, Math.Abs(minLag)).Concat(calculatedValues).ToList();
|
---|
[4722] | 87 | OnEstimatedValuesChanged();
|
---|
| 88 | }
|
---|
| 89 |
|
---|
[4468] | 90 | public virtual IEnumerable<double> GetEstimatedValues(IEnumerable<int> rows) {
|
---|
| 91 | if (estimatedValues == null) RecalculateEstimatedValues();
|
---|
| 92 | foreach (int row in rows)
|
---|
| 93 | yield return estimatedValues[row];
|
---|
| 94 | }
|
---|
[3442] | 95 | }
|
---|
| 96 | }
|
---|