1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Drawing;
|
---|
26 | using HeuristicLab.Common;
|
---|
27 | using HeuristicLab.Core;
|
---|
28 | using HeuristicLab.Data;
|
---|
29 | using HeuristicLab.Optimization;
|
---|
30 | using HeuristicLab.Parameters;
|
---|
31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
32 | using HeuristicLab.PluginInfrastructure;
|
---|
33 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
34 | using HeuristicLab.Problems.DataAnalysis;
|
---|
35 | using HeuristicLab.Operators;
|
---|
36 | using HeuristicLab.Problems.DataAnalysis.Evaluators;
|
---|
37 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
38 |
|
---|
39 | namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic {
|
---|
40 | [Item("SymbolicRegressionScaledMeanSquaredErrorEvaluator", "Calculates the mean squared error of a linearly scaled symbolic regression solution.")]
|
---|
41 | [StorableClass]
|
---|
42 | public class SymbolicRegressionScaledMeanSquaredErrorEvaluator : SymbolicRegressionMeanSquaredErrorEvaluator {
|
---|
43 |
|
---|
44 | #region parameter properties
|
---|
45 | public ILookupParameter<DoubleValue> AlphaParameter {
|
---|
46 | get { return (ILookupParameter<DoubleValue>)Parameters["Alpha"]; }
|
---|
47 | }
|
---|
48 | public ILookupParameter<DoubleValue> BetaParameter {
|
---|
49 | get { return (ILookupParameter<DoubleValue>)Parameters["Beta"]; }
|
---|
50 | }
|
---|
51 | #endregion
|
---|
52 | #region properties
|
---|
53 | public DoubleValue Alpha {
|
---|
54 | get { return AlphaParameter.ActualValue; }
|
---|
55 | set { AlphaParameter.ActualValue = value; }
|
---|
56 | }
|
---|
57 | public DoubleValue Beta {
|
---|
58 | get { return BetaParameter.ActualValue; }
|
---|
59 | set { BetaParameter.ActualValue = value; }
|
---|
60 | }
|
---|
61 | #endregion
|
---|
62 | public SymbolicRegressionScaledMeanSquaredErrorEvaluator()
|
---|
63 | : base() {
|
---|
64 | Parameters.Add(new LookupParameter<DoubleValue>("Alpha", "Alpha parameter for linear scaling of the estimated values."));
|
---|
65 | Parameters.Add(new LookupParameter<DoubleValue>("Beta", "Beta parameter for linear scaling of the estimated values."));
|
---|
66 | }
|
---|
67 |
|
---|
68 | protected override double Evaluate(ISymbolicExpressionTreeInterpreter interpreter, SymbolicExpressionTree solution, Dataset dataset, StringValue targetVariable, IntValue samplesStart, IntValue samplesEnd) {
|
---|
69 | double alpha, beta;
|
---|
70 | double mse = Calculate(interpreter, solution, LowerEstimationLimit.Value, UpperEstimationLimit.Value, dataset, targetVariable.Value, samplesStart.Value, samplesEnd.Value, out beta, out alpha);
|
---|
71 | AlphaParameter.ActualValue = new DoubleValue(alpha);
|
---|
72 | BetaParameter.ActualValue = new DoubleValue(beta);
|
---|
73 | return mse;
|
---|
74 | }
|
---|
75 |
|
---|
76 | public static double Calculate(ISymbolicExpressionTreeInterpreter interpreter, SymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, Dataset dataset, string targetVariable, int start, int end, out double beta, out double alpha) {
|
---|
77 | var estimatedValues = CalculateScaledEstimatedValues(interpreter, solution, dataset, targetVariable, start, end, out beta, out alpha);
|
---|
78 | estimatedValues = from x in estimatedValues
|
---|
79 | let boundedX = Math.Min(upperEstimationLimit, Math.Max(lowerEstimationLimit, x))
|
---|
80 | select double.IsNaN(boundedX) ? upperEstimationLimit : boundedX;
|
---|
81 | var originalValues = dataset.GetVariableValues(targetVariable, start, end);
|
---|
82 | return SimpleMSEEvaluator.Calculate(originalValues, estimatedValues);
|
---|
83 | }
|
---|
84 |
|
---|
85 | public static double CalculateWithScaling(ISymbolicExpressionTreeInterpreter interpreter, SymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, Dataset dataset, string targetVariable, int start, int end, double beta, double alpha) {
|
---|
86 | var estimatedValues = from x in interpreter.GetSymbolicExpressionTreeValues(solution, dataset, Enumerable.Range(start, end - start))
|
---|
87 | let boundedX = Math.Min(upperEstimationLimit, Math.Max(lowerEstimationLimit, x * beta + alpha))
|
---|
88 | select double.IsNaN(boundedX) ? upperEstimationLimit : boundedX;
|
---|
89 | var originalValues = dataset.GetVariableValues(targetVariable, start, end);
|
---|
90 | return SimpleMSEEvaluator.Calculate(originalValues, estimatedValues);
|
---|
91 | }
|
---|
92 |
|
---|
93 | private static IEnumerable<double> CalculateScaledEstimatedValues(ISymbolicExpressionTreeInterpreter interpreter, SymbolicExpressionTree solution, Dataset dataset, string targetVariable, int start, int end, out double beta, out double alpha) {
|
---|
94 | int targetVariableIndex = dataset.GetVariableIndex(targetVariable);
|
---|
95 | var estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, dataset, Enumerable.Range(start, end - start)).ToList();
|
---|
96 | var originalValues = dataset.GetVariableValues(targetVariable, start, end);
|
---|
97 | CalculateScalingParameters(originalValues, estimatedValues, out beta, out alpha);
|
---|
98 | for (int i = 0; i < estimatedValues.Count; i++)
|
---|
99 | estimatedValues[i] = estimatedValues[i] * beta + alpha;
|
---|
100 | return estimatedValues;
|
---|
101 | }
|
---|
102 |
|
---|
103 |
|
---|
104 | public static void CalculateScalingParameters(IEnumerable<double> original, IEnumerable<double> estimated, out double beta, out double alpha) {
|
---|
105 | var originalEnumerator = original.GetEnumerator();
|
---|
106 | var estimatedEnumerator = estimated.GetEnumerator();
|
---|
107 |
|
---|
108 | double tMean = original.Average();
|
---|
109 | double xMean = estimated.Average();
|
---|
110 | double sumXT = 0;
|
---|
111 | double sumXX = 0;
|
---|
112 | while (originalEnumerator.MoveNext() & estimatedEnumerator.MoveNext()) {
|
---|
113 | // calculate alpha and beta on the subset of rows with valid values
|
---|
114 | if (IsValidValue(originalEnumerator.Current) && IsValidValue(estimatedEnumerator.Current)) {
|
---|
115 | double x = estimatedEnumerator.Current;
|
---|
116 | double t = originalEnumerator.Current;
|
---|
117 | sumXT += (x - xMean) * (t - tMean);
|
---|
118 | sumXX += (x - xMean) * (x - xMean);
|
---|
119 | }
|
---|
120 | }
|
---|
121 | if (estimatedEnumerator.MoveNext() || originalEnumerator.MoveNext()) {
|
---|
122 | throw new ArgumentException("Number of elements in estimated and original doesn't match.");
|
---|
123 | }
|
---|
124 | if (sumXX != 0) {
|
---|
125 | beta = sumXT / sumXX;
|
---|
126 | } else {
|
---|
127 | beta = 1;
|
---|
128 | }
|
---|
129 | alpha = tMean - beta * xMean;
|
---|
130 | }
|
---|
131 |
|
---|
132 | private static bool IsValidValue(double d) {
|
---|
133 | return !double.IsInfinity(d) && !double.IsNaN(d);
|
---|
134 | }
|
---|
135 | }
|
---|
136 | }
|
---|