[3532] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using System.Drawing;
|
---|
| 26 | using HeuristicLab.Common;
|
---|
| 27 | using HeuristicLab.Core;
|
---|
| 28 | using HeuristicLab.Data;
|
---|
| 29 | using HeuristicLab.Optimization;
|
---|
| 30 | using HeuristicLab.Parameters;
|
---|
| 31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 32 | using HeuristicLab.PluginInfrastructure;
|
---|
| 33 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 34 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 35 | using HeuristicLab.Operators;
|
---|
| 36 | using HeuristicLab.Problems.DataAnalysis.Evaluators;
|
---|
| 37 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
| 38 |
|
---|
| 39 | namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic {
|
---|
| 40 | [Item("SymbolicRegressionScaledMeanSquaredErrorEvaluator", "Calculates the mean squared error of a linearly scaled symbolic regression solution.")]
|
---|
| 41 | [StorableClass]
|
---|
| 42 | public class SymbolicRegressionScaledMeanSquaredErrorEvaluator : SymbolicRegressionMeanSquaredErrorEvaluator {
|
---|
| 43 |
|
---|
| 44 | #region parameter properties
|
---|
| 45 | public ILookupParameter<DoubleValue> AlphaParameter {
|
---|
| 46 | get { return (ILookupParameter<DoubleValue>)Parameters["Alpha"]; }
|
---|
| 47 | }
|
---|
| 48 | public ILookupParameter<DoubleValue> BetaParameter {
|
---|
| 49 | get { return (ILookupParameter<DoubleValue>)Parameters["Beta"]; }
|
---|
| 50 | }
|
---|
| 51 | #endregion
|
---|
| 52 | #region properties
|
---|
| 53 | public DoubleValue Alpha {
|
---|
| 54 | get { return AlphaParameter.ActualValue; }
|
---|
| 55 | set { AlphaParameter.ActualValue = value; }
|
---|
| 56 | }
|
---|
| 57 | public DoubleValue Beta {
|
---|
| 58 | get { return BetaParameter.ActualValue; }
|
---|
| 59 | set { BetaParameter.ActualValue = value; }
|
---|
| 60 | }
|
---|
| 61 | #endregion
|
---|
| 62 | public SymbolicRegressionScaledMeanSquaredErrorEvaluator()
|
---|
| 63 | : base() {
|
---|
| 64 | Parameters.Add(new LookupParameter<DoubleValue>("Alpha", "Alpha parameter for linear scaling of the estimated values."));
|
---|
| 65 | Parameters.Add(new LookupParameter<DoubleValue>("Beta", "Beta parameter for linear scaling of the estimated values."));
|
---|
| 66 | }
|
---|
| 67 |
|
---|
| 68 | protected override double Evaluate(ISymbolicExpressionTreeInterpreter interpreter, SymbolicExpressionTree solution, Dataset dataset, StringValue targetVariable, IntValue samplesStart, IntValue samplesEnd) {
|
---|
| 69 | double alpha, beta;
|
---|
| 70 | double mse = Calculate(interpreter, solution, LowerEstimationLimit.Value, UpperEstimationLimit.Value, dataset, targetVariable.Value, samplesStart.Value, samplesEnd.Value, out beta, out alpha);
|
---|
| 71 | AlphaParameter.ActualValue = new DoubleValue(alpha);
|
---|
| 72 | BetaParameter.ActualValue = new DoubleValue(beta);
|
---|
| 73 | return mse;
|
---|
| 74 | }
|
---|
| 75 |
|
---|
| 76 | public static double Calculate(ISymbolicExpressionTreeInterpreter interpreter, SymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, Dataset dataset, string targetVariable, int start, int end, out double beta, out double alpha) {
|
---|
| 77 | var estimatedValues = CalculateScaledEstimatedValues(interpreter, solution, dataset, targetVariable, start, end, out beta, out alpha);
|
---|
| 78 | estimatedValues = from x in estimatedValues
|
---|
| 79 | let boundedX = Math.Min(upperEstimationLimit, Math.Max(lowerEstimationLimit, x))
|
---|
| 80 | select double.IsNaN(boundedX) ? upperEstimationLimit : boundedX;
|
---|
| 81 | var originalValues = dataset.GetVariableValues(targetVariable, start, end);
|
---|
| 82 | return SimpleMSEEvaluator.Calculate(originalValues, estimatedValues);
|
---|
| 83 | }
|
---|
| 84 |
|
---|
| 85 | public static double CalculateWithScaling(ISymbolicExpressionTreeInterpreter interpreter, SymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, Dataset dataset, string targetVariable, int start, int end, double beta, double alpha) {
|
---|
| 86 | var estimatedValues = from x in interpreter.GetSymbolicExpressionTreeValues(solution, dataset, Enumerable.Range(start, end - start))
|
---|
| 87 | let boundedX = Math.Min(upperEstimationLimit, Math.Max(lowerEstimationLimit, x * beta + alpha))
|
---|
| 88 | select double.IsNaN(boundedX) ? upperEstimationLimit : boundedX;
|
---|
| 89 | var originalValues = dataset.GetVariableValues(targetVariable, start, end);
|
---|
| 90 | return SimpleMSEEvaluator.Calculate(originalValues, estimatedValues);
|
---|
| 91 | }
|
---|
| 92 |
|
---|
| 93 | private static IEnumerable<double> CalculateScaledEstimatedValues(ISymbolicExpressionTreeInterpreter interpreter, SymbolicExpressionTree solution, Dataset dataset, string targetVariable, int start, int end, out double beta, out double alpha) {
|
---|
| 94 | int targetVariableIndex = dataset.GetVariableIndex(targetVariable);
|
---|
[3807] | 95 | var estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, dataset, Enumerable.Range(start, end - start)).ToArray();
|
---|
[3532] | 96 | var originalValues = dataset.GetVariableValues(targetVariable, start, end);
|
---|
| 97 | CalculateScalingParameters(originalValues, estimatedValues, out beta, out alpha);
|
---|
[3807] | 98 | for (int i = 0; i < estimatedValues.Length; i++)
|
---|
[3532] | 99 | estimatedValues[i] = estimatedValues[i] * beta + alpha;
|
---|
| 100 | return estimatedValues;
|
---|
| 101 | }
|
---|
| 102 |
|
---|
| 103 |
|
---|
| 104 | public static void CalculateScalingParameters(IEnumerable<double> original, IEnumerable<double> estimated, out double beta, out double alpha) {
|
---|
[3807] | 105 | double[] originalValues = original.ToArray();
|
---|
| 106 | double[] estimatedValues = estimated.ToArray();
|
---|
| 107 | if (originalValues.Length != estimatedValues.Length) throw new ArgumentException();
|
---|
| 108 | var filteredResult = (from row in Enumerable.Range(0, originalValues.Length)
|
---|
| 109 | let t = originalValues[row]
|
---|
| 110 | let e = estimatedValues[row]
|
---|
| 111 | where IsValidValue(t)
|
---|
| 112 | where IsValidValue(e)
|
---|
| 113 | select new { Estimation = e, Target = t })
|
---|
| 114 | .OrderBy(x => Math.Abs(x.Target)) // make sure small values are considered before large values
|
---|
| 115 | .ToArray();
|
---|
[3532] | 116 |
|
---|
[3807] | 117 | // calculate alpha and beta on the subset of rows with valid values
|
---|
| 118 | originalValues = filteredResult.Select(x => x.Target).ToArray();
|
---|
| 119 | estimatedValues = filteredResult.Select(x => x.Estimation).ToArray();
|
---|
| 120 | int n = originalValues.Length;
|
---|
| 121 | if (n > 2) {
|
---|
| 122 | double tMean = originalValues.Average();
|
---|
| 123 | double xMean = estimatedValues.Average();
|
---|
| 124 | double sumXT = 0;
|
---|
| 125 | double sumXX = 0;
|
---|
| 126 | for (int i = 0; i < n; i++) {
|
---|
| 127 | // calculate alpha and beta on the subset of rows with valid values
|
---|
| 128 | double x = estimatedValues[i];
|
---|
| 129 | double t = originalValues[i];
|
---|
[3532] | 130 | sumXT += (x - xMean) * (t - tMean);
|
---|
| 131 | sumXX += (x - xMean) * (x - xMean);
|
---|
| 132 | }
|
---|
[3807] | 133 | if (!sumXX.IsAlmost(0.0)) {
|
---|
| 134 | beta = sumXT / sumXX;
|
---|
| 135 | } else {
|
---|
| 136 | beta = 1;
|
---|
| 137 | }
|
---|
| 138 | alpha = tMean - beta * xMean;
|
---|
[3532] | 139 | } else {
|
---|
[3807] | 140 | alpha = 0.0;
|
---|
| 141 | beta = 1.0;
|
---|
[3532] | 142 | }
|
---|
| 143 | }
|
---|
| 144 |
|
---|
| 145 | private static bool IsValidValue(double d) {
|
---|
[3807] | 146 | return !double.IsInfinity(d) && !double.IsNaN(d) && d > -1.0E07 && d < 1.0E07; // don't consider very large or very small values for scaling
|
---|
[3532] | 147 | }
|
---|
| 148 | }
|
---|
| 149 | }
|
---|