Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Problems.DataAnalysis.Regression/3.3/Symbolic/SymbolicRegressionProblem.cs @ 5728

Last change on this file since 5728 was 5445, checked in by swagner, 14 years ago

Updated year of copyrights (#1406)

File size: 9.3 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Linq;
24using HeuristicLab.Common;
25using HeuristicLab.Core;
26using HeuristicLab.Data;
27using HeuristicLab.Optimization;
28using HeuristicLab.Parameters;
29using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
30using HeuristicLab.Problems.DataAnalysis.Regression.Symbolic.Analyzers;
31
32namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic {
33  [Item("Symbolic Regression Problem (single objective)", "Represents a single objective symbolic regression problem.")]
34  [Creatable("Problems")]
35  [StorableClass]
36  public sealed class SymbolicRegressionProblem : SymbolicRegressionProblemBase, ISingleObjectiveDataAnalysisProblem {
37
38    #region Parameter Properties
39    public ValueParameter<BoolValue> MaximizationParameter {
40      get { return (ValueParameter<BoolValue>)Parameters["Maximization"]; }
41    }
42    IParameter ISingleObjectiveProblem.MaximizationParameter {
43      get { return MaximizationParameter; }
44    }
45    public new ValueParameter<ISymbolicRegressionEvaluator> EvaluatorParameter {
46      get { return (ValueParameter<ISymbolicRegressionEvaluator>)Parameters["Evaluator"]; }
47    }
48    IParameter IProblem.EvaluatorParameter {
49      get { return EvaluatorParameter; }
50    }
51    public OptionalValueParameter<DoubleValue> BestKnownQualityParameter {
52      get { return (OptionalValueParameter<DoubleValue>)Parameters["BestKnownQuality"]; }
53    }
54    IParameter ISingleObjectiveProblem.BestKnownQualityParameter {
55      get { return BestKnownQualityParameter; }
56    }
57    #endregion
58
59    #region Properties
60    public new ISymbolicRegressionEvaluator Evaluator {
61      get { return EvaluatorParameter.Value; }
62      set { EvaluatorParameter.Value = value; }
63    }
64    ISingleObjectiveEvaluator ISingleObjectiveProblem.Evaluator {
65      get { return EvaluatorParameter.Value; }
66    }
67    IEvaluator IProblem.Evaluator {
68      get { return EvaluatorParameter.Value; }
69    }
70    public DoubleValue BestKnownQuality {
71      get { return BestKnownQualityParameter.Value; }
72    }
73    #endregion
74
75    [StorableConstructor]
76    private SymbolicRegressionProblem(bool deserializing) : base(deserializing) { }
77    private SymbolicRegressionProblem(SymbolicRegressionProblem original, Cloner cloner)
78      : base(original, cloner) {
79      RegisterParameterEvents();
80      RegisterParameterValueEvents();
81    }
82
83    public SymbolicRegressionProblem()
84      : base() {
85      var evaluator = new SymbolicRegressionPearsonsRSquaredEvaluator();
86      Parameters.Add(new ValueParameter<BoolValue>("Maximization", "Set to false as the error of the regression model should be minimized.", (BoolValue)new BoolValue(true)));
87      Parameters.Add(new ValueParameter<ISymbolicRegressionEvaluator>("Evaluator", "The operator which should be used to evaluate symbolic regression solutions.", evaluator));
88      Parameters.Add(new OptionalValueParameter<DoubleValue>("BestKnownQuality", "The minimal error value that reached by symbolic regression solutions for the problem."));
89
90      InitializeOperators();
91      ParameterizeEvaluator();
92
93      RegisterParameterEvents();
94      RegisterParameterValueEvents();
95    }
96
97    public override IDeepCloneable Clone(Cloner cloner) {
98      return new SymbolicRegressionProblem(this, cloner);
99    }
100
101    private void RegisterParameterValueEvents() {
102      EvaluatorParameter.ValueChanged += new EventHandler(EvaluatorParameter_ValueChanged);
103    }
104
105    private void RegisterParameterEvents() { }
106
107    #region event handling
108    protected override void OnDataAnalysisProblemChanged(EventArgs e) {
109      base.OnDataAnalysisProblemChanged(e);
110      BestKnownQualityParameter.Value = null;
111      // paritions could be changed
112      ParameterizeEvaluator();
113      ParameterizeAnalyzers();
114    }
115
116    protected override void OnSolutionParameterNameChanged(EventArgs e) {
117      base.OnSolutionParameterNameChanged(e);
118      ParameterizeEvaluator();
119      ParameterizeAnalyzers();
120    }
121
122    protected override void OnEvaluatorChanged(EventArgs e) {
123      base.OnEvaluatorChanged(e);
124      ParameterizeEvaluator();
125      ParameterizeAnalyzers();
126      ParameterizeProblem();
127      RaiseEvaluatorChanged(e);
128    }
129    #endregion
130
131    #region event handlers
132    private void EvaluatorParameter_ValueChanged(object sender, EventArgs e) {
133      OnEvaluatorChanged(e);
134    }
135    #endregion
136
137    #region Helpers
138    [StorableHook(HookType.AfterDeserialization)]
139    private void AfterDeserializationHook() {
140      // BackwardsCompatibility3.3
141      #region Backwards compatible code (remove with 3.4)
142      if (Operators == null || Operators.Count() == 0) InitializeOperators();
143      #endregion
144      RegisterParameterEvents();
145      RegisterParameterValueEvents();
146    }
147
148    private void InitializeOperators() {
149      AddOperator(new FixedValidationBestScaledSymbolicRegressionSolutionAnalyzer());
150      AddOperator(new SymbolicRegressionOverfittingAnalyzer());
151      AddOperator(new TrainingBestScaledSymbolicRegressionSolutionAnalyzer());
152      ParameterizeAnalyzers();
153    }
154
155    private void ParameterizeEvaluator() {
156      Evaluator.SymbolicExpressionTreeParameter.ActualName = SolutionCreator.SymbolicExpressionTreeParameter.ActualName;
157      Evaluator.RegressionProblemDataParameter.ActualName = DataAnalysisProblemDataParameter.Name;
158      Evaluator.SamplesStartParameter.Value = TrainingSamplesStart;
159      Evaluator.SamplesEndParameter.Value = TrainingSamplesEnd;
160    }
161
162    private void ParameterizeAnalyzers() {
163      foreach (var analyzer in Analyzers) {
164        analyzer.SymbolicExpressionTreeParameter.ActualName = SolutionCreator.SymbolicExpressionTreeParameter.ActualName;
165        var validationSolutionAnalyzer = analyzer as SymbolicRegressionValidationAnalyzer;
166        if (validationSolutionAnalyzer != null) {
167          validationSolutionAnalyzer.ProblemDataParameter.ActualName = DataAnalysisProblemDataParameter.Name;
168          validationSolutionAnalyzer.UpperEstimationLimitParameter.ActualName = UpperEstimationLimitParameter.Name;
169          validationSolutionAnalyzer.LowerEstimationLimitParameter.ActualName = LowerEstimationLimitParameter.Name;
170          validationSolutionAnalyzer.SymbolicExpressionTreeInterpreterParameter.ActualName = SymbolicExpressionTreeInterpreterParameter.Name;
171          validationSolutionAnalyzer.SymbolicExpressionTreeParameter.ActualName = SolutionCreator.SymbolicExpressionTreeParameter.ActualName;
172          validationSolutionAnalyzer.ValidationSamplesStartParameter.Value = ValidationSamplesStart;
173          validationSolutionAnalyzer.ValidationSamplesEndParameter.Value = ValidationSamplesEnd;
174        }
175
176        var fixedBestValidationSolutionAnalyzer = analyzer as FixedValidationBestScaledSymbolicRegressionSolutionAnalyzer;
177        if (fixedBestValidationSolutionAnalyzer != null) {
178          fixedBestValidationSolutionAnalyzer.BestKnownQualityParameter.ActualName = BestKnownQualityParameter.Name;
179        }
180
181        var bestValidationSolutionAnalyzer = analyzer as ValidationBestScaledSymbolicRegressionSolutionAnalyzer;
182        if (bestValidationSolutionAnalyzer != null) {
183          bestValidationSolutionAnalyzer.ProblemDataParameter.ActualName = DataAnalysisProblemDataParameter.Name;
184          bestValidationSolutionAnalyzer.UpperEstimationLimitParameter.ActualName = UpperEstimationLimitParameter.Name;
185          bestValidationSolutionAnalyzer.LowerEstimationLimitParameter.ActualName = LowerEstimationLimitParameter.Name;
186          bestValidationSolutionAnalyzer.SymbolicExpressionTreeInterpreterParameter.ActualName = SymbolicExpressionTreeInterpreterParameter.Name;
187          bestValidationSolutionAnalyzer.SymbolicExpressionTreeParameter.ActualName = SolutionCreator.SymbolicExpressionTreeParameter.ActualName;
188          bestValidationSolutionAnalyzer.ValidationSamplesStartParameter.Value = ValidationSamplesStart;
189          bestValidationSolutionAnalyzer.ValidationSamplesEndParameter.Value = ValidationSamplesEnd;
190          bestValidationSolutionAnalyzer.BestKnownQualityParameter.ActualName = BestKnownQualityParameter.Name;
191          bestValidationSolutionAnalyzer.QualityParameter.ActualName = Evaluator.QualityParameter.ActualName;
192        }
193      }
194    }
195
196    private void ParameterizeProblem() {
197      if (MaximizationParameter.Value != null) {
198        MaximizationParameter.Value.Value = Evaluator.Maximization;
199      } else {
200        MaximizationParameter.Value = new BoolValue(Evaluator.Maximization);
201      }
202    }
203    #endregion
204  }
205}
Note: See TracBrowser for help on using the repository browser.