Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Problems.DataAnalysis.Regression/3.3/Symbolic/SymbolicRegressionMeanSquaredErrorEvaluator.cs @ 4098

Last change on this file since 4098 was 4068, checked in by swagner, 14 years ago

Sorted usings and removed unused usings in entire solution (#1094)

File size: 4.6 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using HeuristicLab.Core;
25using HeuristicLab.Data;
26using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
27using HeuristicLab.Parameters;
28using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
29using HeuristicLab.Problems.DataAnalysis.Evaluators;
30using HeuristicLab.Problems.DataAnalysis.Symbolic;
31
32namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic {
33  [Item("SymbolicRegressionMeanSquaredErrorEvaluator", "Calculates the mean squared error of a symbolic regression solution.")]
34  [StorableClass]
35  public class SymbolicRegressionMeanSquaredErrorEvaluator : SymbolicRegressionEvaluator {
36    private const string UpperEstimationLimitParameterName = "UpperEstimationLimit";
37    private const string LowerEstimationLimitParameterName = "LowerEstimationLimit";
38
39    #region parameter properties
40    public IValueLookupParameter<DoubleValue> UpperEstimationLimitParameter {
41      get { return (IValueLookupParameter<DoubleValue>)Parameters[UpperEstimationLimitParameterName]; }
42    }
43    public IValueLookupParameter<DoubleValue> LowerEstimationLimitParameter {
44      get { return (IValueLookupParameter<DoubleValue>)Parameters[LowerEstimationLimitParameterName]; }
45    }
46    #endregion
47    #region properties
48    public DoubleValue UpperEstimationLimit {
49      get { return UpperEstimationLimitParameter.ActualValue; }
50    }
51    public DoubleValue LowerEstimationLimit {
52      get { return LowerEstimationLimitParameter.ActualValue; }
53    }
54    #endregion
55    public SymbolicRegressionMeanSquaredErrorEvaluator()
56      : base() {
57      Parameters.Add(new ValueLookupParameter<DoubleValue>(UpperEstimationLimitParameterName, "The upper limit that should be used as cut off value for the output values of symbolic expression trees."));
58      Parameters.Add(new ValueLookupParameter<DoubleValue>(LowerEstimationLimitParameterName, "The lower limit that should be used as cut off value for the output values of symbolic expression trees."));
59    }
60
61    protected override double Evaluate(ISymbolicExpressionTreeInterpreter interpreter, SymbolicExpressionTree solution, Dataset dataset, StringValue targetVariable, IEnumerable<int> rows) {
62      double mse = Calculate(interpreter, solution, LowerEstimationLimit.Value, UpperEstimationLimit.Value, dataset, targetVariable.Value, rows);
63      return mse;
64    }
65
66    public static double Calculate(ISymbolicExpressionTreeInterpreter interpreter, SymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, Dataset dataset, string targetVariable, IEnumerable<int> rows) {
67      IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, dataset, rows);
68      IEnumerable<double> originalValues = dataset.GetEnumeratedVariableValues(targetVariable, rows);
69      IEnumerator<double> originalEnumerator = originalValues.GetEnumerator();
70      IEnumerator<double> estimatedEnumerator = estimatedValues.GetEnumerator();
71      OnlineMeanSquaredErrorEvaluator mseEvaluator = new OnlineMeanSquaredErrorEvaluator();
72
73      while (originalEnumerator.MoveNext() & estimatedEnumerator.MoveNext()) {
74        double estimated = estimatedEnumerator.Current;
75        double original = originalEnumerator.Current;
76        if (double.IsNaN(estimated))
77          estimated = upperEstimationLimit;
78        else
79          estimated = Math.Min(upperEstimationLimit, Math.Max(lowerEstimationLimit, estimated));
80        mseEvaluator.Add(original, estimated);
81      }
82
83      if (estimatedEnumerator.MoveNext() || originalEnumerator.MoveNext()) {
84        throw new ArgumentException("Number of elements in original and estimated enumeration doesn't match.");
85      } else {
86        return mseEvaluator.MeanSquaredError;
87      }
88    }
89  }
90}
Note: See TracBrowser for help on using the repository browser.