[3652] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Linq;
|
---|
| 24 | using HeuristicLab.Core;
|
---|
| 25 | using HeuristicLab.Data;
|
---|
[4068] | 26 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 27 | using HeuristicLab.Operators;
|
---|
[3652] | 28 | using HeuristicLab.Parameters;
|
---|
| 29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 30 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
| 31 |
|
---|
| 32 | namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic {
|
---|
| 33 | [Item("SimpleSymbolicRegressionEvaluator", "Evaluates a symbolic regression solution and outputs a matrix of target and estimated values.")]
|
---|
| 34 | [StorableClass]
|
---|
| 35 | public class SimpleSymbolicRegressionEvaluator : SingleSuccessorOperator {
|
---|
| 36 | private const string SymbolicExpressionTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter";
|
---|
| 37 | private const string FunctionTreeParameterName = "FunctionTree";
|
---|
| 38 | private const string RegressionProblemDataParameterName = "RegressionProblemData";
|
---|
| 39 | private const string SamplesStartParameterName = "SamplesStart";
|
---|
| 40 | private const string SamplesEndParameterName = "SamplesEnd";
|
---|
| 41 | private const string ValuesParameterName = "Values";
|
---|
| 42 | private const string UpperEstimationLimitParameterName = "UpperEstimationLimit";
|
---|
| 43 | private const string LowerEstimationLimitParameterName = "LowerEstimationLimit";
|
---|
| 44 |
|
---|
| 45 | #region ISymbolicRegressionEvaluator Members
|
---|
| 46 | public ILookupParameter<ISymbolicExpressionTreeInterpreter> SymbolicExpressionTreeInterpreterParameter {
|
---|
| 47 | get { return (ILookupParameter<ISymbolicExpressionTreeInterpreter>)Parameters[SymbolicExpressionTreeInterpreterParameterName]; }
|
---|
| 48 | }
|
---|
| 49 |
|
---|
| 50 | public ILookupParameter<SymbolicExpressionTree> SymbolicExpressionTreeParameter {
|
---|
| 51 | get { return (ILookupParameter<SymbolicExpressionTree>)Parameters[FunctionTreeParameterName]; }
|
---|
| 52 | }
|
---|
| 53 |
|
---|
| 54 | public ILookupParameter<DataAnalysisProblemData> RegressionProblemDataParameter {
|
---|
| 55 | get { return (ILookupParameter<DataAnalysisProblemData>)Parameters[RegressionProblemDataParameterName]; }
|
---|
| 56 | }
|
---|
| 57 |
|
---|
| 58 | public IValueLookupParameter<IntValue> SamplesStartParameter {
|
---|
| 59 | get { return (IValueLookupParameter<IntValue>)Parameters[SamplesStartParameterName]; }
|
---|
| 60 | }
|
---|
| 61 |
|
---|
| 62 | public IValueLookupParameter<IntValue> SamplesEndParameter {
|
---|
| 63 | get { return (IValueLookupParameter<IntValue>)Parameters[SamplesEndParameterName]; }
|
---|
| 64 | }
|
---|
| 65 | public IValueLookupParameter<DoubleValue> UpperEstimationLimitParameter {
|
---|
| 66 | get { return (IValueLookupParameter<DoubleValue>)Parameters[UpperEstimationLimitParameterName]; }
|
---|
| 67 | }
|
---|
| 68 | public IValueLookupParameter<DoubleValue> LowerEstimationLimitParameter {
|
---|
| 69 | get { return (IValueLookupParameter<DoubleValue>)Parameters[LowerEstimationLimitParameterName]; }
|
---|
| 70 | }
|
---|
| 71 |
|
---|
| 72 | public ILookupParameter<DoubleMatrix> ValuesParameter {
|
---|
| 73 | get { return (ILookupParameter<DoubleMatrix>)Parameters[ValuesParameterName]; }
|
---|
| 74 | }
|
---|
| 75 |
|
---|
| 76 | #endregion
|
---|
| 77 | #region properties
|
---|
| 78 | public ISymbolicExpressionTreeInterpreter SymbolicExpressionTreeInterpreter {
|
---|
| 79 | get { return SymbolicExpressionTreeInterpreterParameter.ActualValue; }
|
---|
| 80 | }
|
---|
| 81 | public SymbolicExpressionTree SymbolicExpressionTree {
|
---|
| 82 | get { return SymbolicExpressionTreeParameter.ActualValue; }
|
---|
| 83 | }
|
---|
| 84 | public DataAnalysisProblemData RegressionProblemData {
|
---|
| 85 | get { return RegressionProblemDataParameter.ActualValue; }
|
---|
| 86 | }
|
---|
| 87 | public IntValue SamplesStart {
|
---|
| 88 | get { return SamplesStartParameter.ActualValue; }
|
---|
| 89 | }
|
---|
| 90 | public IntValue SamplesEnd {
|
---|
| 91 | get { return SamplesEndParameter.ActualValue; }
|
---|
| 92 | }
|
---|
| 93 | public DoubleValue UpperEstimationLimit {
|
---|
| 94 | get { return UpperEstimationLimitParameter.ActualValue; }
|
---|
| 95 | }
|
---|
| 96 | public DoubleValue LowerEstimationLimit {
|
---|
| 97 | get { return LowerEstimationLimitParameter.ActualValue; }
|
---|
| 98 | }
|
---|
| 99 |
|
---|
| 100 | #endregion
|
---|
| 101 |
|
---|
| 102 | public SimpleSymbolicRegressionEvaluator()
|
---|
| 103 | : base() {
|
---|
| 104 | Parameters.Add(new LookupParameter<ISymbolicExpressionTreeInterpreter>(SymbolicExpressionTreeInterpreterParameterName, "The interpreter that should be used to calculate the output values of the symbolic expression tree."));
|
---|
| 105 | Parameters.Add(new LookupParameter<SymbolicExpressionTree>(FunctionTreeParameterName, "The symbolic regression solution encoded as a symbolic expression tree."));
|
---|
| 106 | Parameters.Add(new LookupParameter<DataAnalysisProblemData>(RegressionProblemDataParameterName, "The problem data on which the symbolic regression solution should be evaluated."));
|
---|
| 107 | Parameters.Add(new ValueLookupParameter<IntValue>(SamplesStartParameterName, "The start index of the dataset partition on which the symbolic regression solution should be evaluated."));
|
---|
| 108 | Parameters.Add(new ValueLookupParameter<IntValue>(SamplesEndParameterName, "The end index of the dataset partition on which the symbolic regression solution should be evaluated."));
|
---|
| 109 | Parameters.Add(new ValueLookupParameter<DoubleValue>(UpperEstimationLimitParameterName, "The upper limit that should be used as cut off value for the output values of symbolic expression trees."));
|
---|
| 110 | Parameters.Add(new ValueLookupParameter<DoubleValue>(LowerEstimationLimitParameterName, "The lower limit that should be used as cut off value for the output values of symbolic expression trees."));
|
---|
| 111 | Parameters.Add(new LookupParameter<DoubleMatrix>(ValuesParameterName, "The matrix of target and estimated values as generated by the symbolic regression solution."));
|
---|
| 112 | }
|
---|
| 113 |
|
---|
| 114 | public override IOperation Apply() {
|
---|
| 115 | Dataset dataset = RegressionProblemData.Dataset;
|
---|
| 116 | string targetVariable = RegressionProblemData.TargetVariable.Value;
|
---|
| 117 | ISymbolicExpressionTreeInterpreter interpreter = SymbolicExpressionTreeInterpreter;
|
---|
| 118 | SymbolicExpressionTree tree = SymbolicExpressionTree;
|
---|
| 119 | int start = SamplesStart.Value;
|
---|
| 120 | int end = SamplesEnd.Value;
|
---|
[3892] | 121 | double lowerEstimationLimit = LowerEstimationLimit != null ? LowerEstimationLimit.Value : double.NegativeInfinity;
|
---|
| 122 | double upperEstimationLimit = UpperEstimationLimit != null ? UpperEstimationLimit.Value : double.PositiveInfinity;
|
---|
[3652] | 123 | int targetVariableIndex = dataset.GetVariableIndex(targetVariable);
|
---|
| 124 | var estimatedValues = from x in interpreter.GetSymbolicExpressionTreeValues(tree, dataset, Enumerable.Range(start, end - start))
|
---|
| 125 | let boundedX = Math.Min(upperEstimationLimit, Math.Max(lowerEstimationLimit, x))
|
---|
| 126 | select double.IsNaN(boundedX) ? upperEstimationLimit : boundedX;
|
---|
| 127 | var originalValues = from row in Enumerable.Range(start, end - start) select dataset[row, targetVariableIndex];
|
---|
| 128 | // NB: indexes must match SimpleEvaluator.ORIGINAL_INDEX and SimpleEvaluator.ESTIMATED_INDEX
|
---|
| 129 | ValuesParameter.ActualValue = new DoubleMatrix(MatrixExtensions<double>.Create(originalValues.ToArray(), estimatedValues.ToArray()));
|
---|
| 130 | return base.Apply();
|
---|
| 131 | }
|
---|
| 132 | }
|
---|
| 133 | }
|
---|