1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
28 | using HeuristicLab.Problems.DataAnalysis.Evaluators;
|
---|
29 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic {
|
---|
32 | [Item("SymbolicRegressionPearsonsRSquaredEvaluator", "Calculates the pearson r² correlation coefficient of a symbolic regression solution.")]
|
---|
33 | [StorableClass]
|
---|
34 | public class SymbolicRegressionPearsonsRSquaredEvaluator : SingleObjectiveSymbolicRegressionEvaluator {
|
---|
35 |
|
---|
36 | public override bool Maximization {
|
---|
37 | get { return true; }
|
---|
38 | }
|
---|
39 |
|
---|
40 | [StorableConstructor]
|
---|
41 | protected SymbolicRegressionPearsonsRSquaredEvaluator(bool deserializing) : base(deserializing) { }
|
---|
42 | protected SymbolicRegressionPearsonsRSquaredEvaluator(SymbolicRegressionPearsonsRSquaredEvaluator original, Cloner cloner)
|
---|
43 | : base(original, cloner) {
|
---|
44 | }
|
---|
45 | public SymbolicRegressionPearsonsRSquaredEvaluator() : base() { }
|
---|
46 |
|
---|
47 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
48 | return new SymbolicRegressionPearsonsRSquaredEvaluator(this, cloner);
|
---|
49 | }
|
---|
50 | public override double Evaluate(ISymbolicExpressionTreeInterpreter interpreter, SymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, Dataset dataset, string targetVariable, IEnumerable<int> rows) {
|
---|
51 | double mse = Calculate(interpreter, solution, lowerEstimationLimit, upperEstimationLimit, dataset, targetVariable, rows);
|
---|
52 | return mse;
|
---|
53 | }
|
---|
54 |
|
---|
55 | public static double Calculate(ISymbolicExpressionTreeInterpreter interpreter, SymbolicExpressionTree solution, double lowerEstimationLimit, double upperEstimationLimit, Dataset dataset, string targetVariable, IEnumerable<int> rows) {
|
---|
56 | IEnumerable<double> estimatedValues = interpreter.GetSymbolicExpressionTreeValues(solution, dataset, rows);
|
---|
57 | IEnumerable<double> originalValues = dataset.GetEnumeratedVariableValues(targetVariable, rows);
|
---|
58 | IEnumerator<double> originalEnumerator = originalValues.GetEnumerator();
|
---|
59 | IEnumerator<double> estimatedEnumerator = estimatedValues.GetEnumerator();
|
---|
60 | OnlinePearsonsRSquaredEvaluator r2Evaluator = new OnlinePearsonsRSquaredEvaluator();
|
---|
61 |
|
---|
62 | while (originalEnumerator.MoveNext() & estimatedEnumerator.MoveNext()) {
|
---|
63 | double estimated = estimatedEnumerator.Current;
|
---|
64 | double original = originalEnumerator.Current;
|
---|
65 | if (double.IsNaN(estimated))
|
---|
66 | estimated = upperEstimationLimit;
|
---|
67 | else
|
---|
68 | estimated = Math.Min(upperEstimationLimit, Math.Max(lowerEstimationLimit, estimated));
|
---|
69 | r2Evaluator.Add(original, estimated);
|
---|
70 | }
|
---|
71 |
|
---|
72 | if (estimatedEnumerator.MoveNext() || originalEnumerator.MoveNext()) {
|
---|
73 | throw new ArgumentException("Number of elements in original and estimated enumeration doesn't match.");
|
---|
74 | } else {
|
---|
75 | return r2Evaluator.RSquared;
|
---|
76 | }
|
---|
77 | }
|
---|
78 | }
|
---|
79 | }
|
---|