1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Analysis;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
29 | using HeuristicLab.Operators;
|
---|
30 | using HeuristicLab.Optimization;
|
---|
31 | using HeuristicLab.Parameters;
|
---|
32 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
33 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
34 |
|
---|
35 | namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic.Analyzers {
|
---|
36 | /// <summary>
|
---|
37 | /// A base class for operators that analyze the validation fitness of symbolic regression models.
|
---|
38 | /// </summary>
|
---|
39 | [Item("SymbolicRegressionValidationAnalyzer", "A base class for operators that analyze the validation fitness of symbolic regression models.")]
|
---|
40 | [StorableClass]
|
---|
41 | public abstract class SymbolicRegressionValidationAnalyzer : SingleSuccessorOperator {
|
---|
42 | private const string RandomParameterName = "Random";
|
---|
43 | private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
|
---|
44 | private const string SymbolicExpressionTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter";
|
---|
45 | private const string ProblemDataParameterName = "ProblemData";
|
---|
46 | private const string ValidationSamplesStartParameterName = "SamplesStart";
|
---|
47 | private const string ValidationSamplesEndParameterName = "SamplesEnd";
|
---|
48 | private const string UpperEstimationLimitParameterName = "UpperEstimationLimit";
|
---|
49 | private const string LowerEstimationLimitParameterName = "LowerEstimationLimit";
|
---|
50 | private const string EvaluatorParameterName = "Evaluator";
|
---|
51 | private const string RelativeNumberOfEvaluatedSamplesParameterName = "RelativeNumberOfEvaluatedSamples";
|
---|
52 |
|
---|
53 | #region parameter properties
|
---|
54 | public ILookupParameter<IRandom> RandomParameter {
|
---|
55 | get { return (ILookupParameter<IRandom>)Parameters[RandomParameterName]; }
|
---|
56 | }
|
---|
57 | public ScopeTreeLookupParameter<SymbolicExpressionTree> SymbolicExpressionTreeParameter {
|
---|
58 | get { return (ScopeTreeLookupParameter<SymbolicExpressionTree>)Parameters[SymbolicExpressionTreeParameterName]; }
|
---|
59 | }
|
---|
60 | public IValueLookupParameter<ISymbolicExpressionTreeInterpreter> SymbolicExpressionTreeInterpreterParameter {
|
---|
61 | get { return (IValueLookupParameter<ISymbolicExpressionTreeInterpreter>)Parameters[SymbolicExpressionTreeInterpreterParameterName]; }
|
---|
62 | }
|
---|
63 | public ILookupParameter<ISymbolicRegressionEvaluator> EvaluatorParameter {
|
---|
64 | get { return (ILookupParameter<ISymbolicRegressionEvaluator>)Parameters[EvaluatorParameterName]; }
|
---|
65 | }
|
---|
66 | public IValueLookupParameter<DataAnalysisProblemData> ProblemDataParameter {
|
---|
67 | get { return (IValueLookupParameter<DataAnalysisProblemData>)Parameters[ProblemDataParameterName]; }
|
---|
68 | }
|
---|
69 | public IValueLookupParameter<IntValue> ValidationSamplesStartParameter {
|
---|
70 | get { return (IValueLookupParameter<IntValue>)Parameters[ValidationSamplesStartParameterName]; }
|
---|
71 | }
|
---|
72 | public IValueLookupParameter<IntValue> ValidationSamplesEndParameter {
|
---|
73 | get { return (IValueLookupParameter<IntValue>)Parameters[ValidationSamplesEndParameterName]; }
|
---|
74 | }
|
---|
75 | public IValueParameter<PercentValue> RelativeNumberOfEvaluatedSamplesParameter {
|
---|
76 | get { return (IValueParameter<PercentValue>)Parameters[RelativeNumberOfEvaluatedSamplesParameterName]; }
|
---|
77 | }
|
---|
78 |
|
---|
79 | public IValueLookupParameter<DoubleValue> UpperEstimationLimitParameter {
|
---|
80 | get { return (IValueLookupParameter<DoubleValue>)Parameters[UpperEstimationLimitParameterName]; }
|
---|
81 | }
|
---|
82 | public IValueLookupParameter<DoubleValue> LowerEstimationLimitParameter {
|
---|
83 | get { return (IValueLookupParameter<DoubleValue>)Parameters[LowerEstimationLimitParameterName]; }
|
---|
84 | }
|
---|
85 | #endregion
|
---|
86 | #region properties
|
---|
87 | public IRandom Random {
|
---|
88 | get { return RandomParameter.ActualValue; }
|
---|
89 | }
|
---|
90 | public ItemArray<SymbolicExpressionTree> SymbolicExpressionTree {
|
---|
91 | get { return SymbolicExpressionTreeParameter.ActualValue; }
|
---|
92 | }
|
---|
93 | public ISymbolicExpressionTreeInterpreter SymbolicExpressionTreeInterpreter {
|
---|
94 | get { return SymbolicExpressionTreeInterpreterParameter.ActualValue; }
|
---|
95 | }
|
---|
96 | public ISymbolicRegressionEvaluator Evaluator {
|
---|
97 | get { return EvaluatorParameter.ActualValue; }
|
---|
98 | }
|
---|
99 | public DataAnalysisProblemData ProblemData {
|
---|
100 | get { return ProblemDataParameter.ActualValue; }
|
---|
101 | }
|
---|
102 | public IntValue ValidiationSamplesStart {
|
---|
103 | get { return ValidationSamplesStartParameter.ActualValue; }
|
---|
104 | }
|
---|
105 | public IntValue ValidationSamplesEnd {
|
---|
106 | get { return ValidationSamplesEndParameter.ActualValue; }
|
---|
107 | }
|
---|
108 | public PercentValue RelativeNumberOfEvaluatedSamples {
|
---|
109 | get { return RelativeNumberOfEvaluatedSamplesParameter.Value; }
|
---|
110 | }
|
---|
111 |
|
---|
112 | public DoubleValue UpperEstimationLimit {
|
---|
113 | get { return UpperEstimationLimitParameter.ActualValue; }
|
---|
114 | }
|
---|
115 | public DoubleValue LowerEstimationLimit {
|
---|
116 | get { return LowerEstimationLimitParameter.ActualValue; }
|
---|
117 | }
|
---|
118 | #endregion
|
---|
119 |
|
---|
120 | [StorableConstructor]
|
---|
121 | protected SymbolicRegressionValidationAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
122 | protected SymbolicRegressionValidationAnalyzer(SymbolicRegressionValidationAnalyzer original, Cloner cloner) : base(original, cloner) { }
|
---|
123 | public SymbolicRegressionValidationAnalyzer()
|
---|
124 | : base() {
|
---|
125 | Parameters.Add(new LookupParameter<IRandom>(RandomParameterName, "The random generator to use."));
|
---|
126 | Parameters.Add(new LookupParameter<ISymbolicRegressionEvaluator>(EvaluatorParameterName, "The evaluator which should be used to evaluate the solution on the validation set."));
|
---|
127 | Parameters.Add(new ScopeTreeLookupParameter<SymbolicExpressionTree>(SymbolicExpressionTreeParameterName, "The symbolic expression trees to analyze."));
|
---|
128 | Parameters.Add(new ValueLookupParameter<ISymbolicExpressionTreeInterpreter>(SymbolicExpressionTreeInterpreterParameterName, "The interpreter that should be used for the analysis of symbolic expression trees."));
|
---|
129 | Parameters.Add(new ValueLookupParameter<DataAnalysisProblemData>(ProblemDataParameterName, "The problem data for which the symbolic expression tree is a solution."));
|
---|
130 | Parameters.Add(new ValueLookupParameter<IntValue>(ValidationSamplesStartParameterName, "The first index of the validation partition of the data set."));
|
---|
131 | Parameters.Add(new ValueLookupParameter<IntValue>(ValidationSamplesEndParameterName, "The last index of the validation partition of the data set."));
|
---|
132 | Parameters.Add(new ValueParameter<PercentValue>(RelativeNumberOfEvaluatedSamplesParameterName, "The relative number of samples of the dataset partition, which should be randomly chosen for evaluation between the start and end index.", new PercentValue(1)));
|
---|
133 | Parameters.Add(new ValueLookupParameter<DoubleValue>(UpperEstimationLimitParameterName, "The upper estimation limit that was set for the evaluation of the symbolic expression trees."));
|
---|
134 | Parameters.Add(new ValueLookupParameter<DoubleValue>(LowerEstimationLimitParameterName, "The lower estimation limit that was set for the evaluation of the symbolic expression trees."));
|
---|
135 | }
|
---|
136 |
|
---|
137 | [StorableHook(HookType.AfterDeserialization)]
|
---|
138 | private void AfterDeserialization() { }
|
---|
139 |
|
---|
140 | public override IOperation Apply() {
|
---|
141 | var trees = SymbolicExpressionTree.ToArray();
|
---|
142 |
|
---|
143 | string targetVariable = ProblemData.TargetVariable.Value;
|
---|
144 |
|
---|
145 | // select a random subset of rows in the validation set
|
---|
146 | int validationStart = ValidiationSamplesStart.Value;
|
---|
147 | int validationEnd = ValidationSamplesEnd.Value;
|
---|
148 | int seed = Random.Next();
|
---|
149 | int count = (int)((validationEnd - validationStart) * RelativeNumberOfEvaluatedSamples.Value);
|
---|
150 | if (count == 0) count = 1;
|
---|
151 | IEnumerable<int> rows = RandomEnumerable.SampleRandomNumbers(seed, validationStart, validationEnd, count)
|
---|
152 | .Where(row => row < ProblemData.TestSamplesStart.Value || ProblemData.TestSamplesEnd.Value <= row);
|
---|
153 |
|
---|
154 | double upperEstimationLimit = UpperEstimationLimit != null ? UpperEstimationLimit.Value : double.PositiveInfinity;
|
---|
155 | double lowerEstimationLimit = LowerEstimationLimit != null ? LowerEstimationLimit.Value : double.NegativeInfinity;
|
---|
156 |
|
---|
157 | double[] validationQuality = new double[trees.Count()];
|
---|
158 | for (int i = 0; i < validationQuality.Length; i++) {
|
---|
159 | validationQuality[i] = Evaluator.Evaluate(SymbolicExpressionTreeInterpreter, trees[i],
|
---|
160 | lowerEstimationLimit, upperEstimationLimit,
|
---|
161 | ProblemData.Dataset, targetVariable,
|
---|
162 | rows);
|
---|
163 | }
|
---|
164 |
|
---|
165 | Analyze(trees, validationQuality);
|
---|
166 | return base.Apply();
|
---|
167 | }
|
---|
168 |
|
---|
169 | protected abstract void Analyze(SymbolicExpressionTree[] trees, double[] validationQuality);
|
---|
170 | }
|
---|
171 | }
|
---|