[5197] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[5445] | 3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[5197] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using System.Linq;
|
---|
| 24 | using HeuristicLab.Analysis;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 29 | using HeuristicLab.Operators;
|
---|
| 30 | using HeuristicLab.Optimization;
|
---|
| 31 | using HeuristicLab.Parameters;
|
---|
| 32 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 33 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
| 34 |
|
---|
| 35 | namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic.Analyzers {
|
---|
| 36 | /// <summary>
|
---|
| 37 | /// A base class for operators that analyze the validation fitness of symbolic regression models.
|
---|
| 38 | /// </summary>
|
---|
| 39 | [Item("SymbolicRegressionValidationAnalyzer", "A base class for operators that analyze the validation fitness of symbolic regression models.")]
|
---|
| 40 | [StorableClass]
|
---|
| 41 | public abstract class SymbolicRegressionValidationAnalyzer : SingleSuccessorOperator {
|
---|
| 42 | private const string RandomParameterName = "Random";
|
---|
| 43 | private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
|
---|
| 44 | private const string SymbolicExpressionTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter";
|
---|
| 45 | private const string ProblemDataParameterName = "ProblemData";
|
---|
| 46 | private const string ValidationSamplesStartParameterName = "SamplesStart";
|
---|
| 47 | private const string ValidationSamplesEndParameterName = "SamplesEnd";
|
---|
| 48 | private const string UpperEstimationLimitParameterName = "UpperEstimationLimit";
|
---|
| 49 | private const string LowerEstimationLimitParameterName = "LowerEstimationLimit";
|
---|
| 50 | private const string EvaluatorParameterName = "Evaluator";
|
---|
| 51 | private const string RelativeNumberOfEvaluatedSamplesParameterName = "RelativeNumberOfEvaluatedSamples";
|
---|
| 52 |
|
---|
| 53 | #region parameter properties
|
---|
| 54 | public ILookupParameter<IRandom> RandomParameter {
|
---|
| 55 | get { return (ILookupParameter<IRandom>)Parameters[RandomParameterName]; }
|
---|
| 56 | }
|
---|
| 57 | public ScopeTreeLookupParameter<SymbolicExpressionTree> SymbolicExpressionTreeParameter {
|
---|
| 58 | get { return (ScopeTreeLookupParameter<SymbolicExpressionTree>)Parameters[SymbolicExpressionTreeParameterName]; }
|
---|
| 59 | }
|
---|
| 60 | public IValueLookupParameter<ISymbolicExpressionTreeInterpreter> SymbolicExpressionTreeInterpreterParameter {
|
---|
| 61 | get { return (IValueLookupParameter<ISymbolicExpressionTreeInterpreter>)Parameters[SymbolicExpressionTreeInterpreterParameterName]; }
|
---|
| 62 | }
|
---|
| 63 | public ILookupParameter<ISymbolicRegressionEvaluator> EvaluatorParameter {
|
---|
| 64 | get { return (ILookupParameter<ISymbolicRegressionEvaluator>)Parameters[EvaluatorParameterName]; }
|
---|
| 65 | }
|
---|
| 66 | public IValueLookupParameter<DataAnalysisProblemData> ProblemDataParameter {
|
---|
| 67 | get { return (IValueLookupParameter<DataAnalysisProblemData>)Parameters[ProblemDataParameterName]; }
|
---|
| 68 | }
|
---|
| 69 | public IValueLookupParameter<IntValue> ValidationSamplesStartParameter {
|
---|
| 70 | get { return (IValueLookupParameter<IntValue>)Parameters[ValidationSamplesStartParameterName]; }
|
---|
| 71 | }
|
---|
| 72 | public IValueLookupParameter<IntValue> ValidationSamplesEndParameter {
|
---|
| 73 | get { return (IValueLookupParameter<IntValue>)Parameters[ValidationSamplesEndParameterName]; }
|
---|
| 74 | }
|
---|
| 75 | public IValueParameter<PercentValue> RelativeNumberOfEvaluatedSamplesParameter {
|
---|
| 76 | get { return (IValueParameter<PercentValue>)Parameters[RelativeNumberOfEvaluatedSamplesParameterName]; }
|
---|
| 77 | }
|
---|
| 78 |
|
---|
| 79 | public IValueLookupParameter<DoubleValue> UpperEstimationLimitParameter {
|
---|
| 80 | get { return (IValueLookupParameter<DoubleValue>)Parameters[UpperEstimationLimitParameterName]; }
|
---|
| 81 | }
|
---|
| 82 | public IValueLookupParameter<DoubleValue> LowerEstimationLimitParameter {
|
---|
| 83 | get { return (IValueLookupParameter<DoubleValue>)Parameters[LowerEstimationLimitParameterName]; }
|
---|
| 84 | }
|
---|
| 85 | #endregion
|
---|
| 86 | #region properties
|
---|
| 87 | public IRandom Random {
|
---|
| 88 | get { return RandomParameter.ActualValue; }
|
---|
| 89 | }
|
---|
| 90 | public ItemArray<SymbolicExpressionTree> SymbolicExpressionTree {
|
---|
| 91 | get { return SymbolicExpressionTreeParameter.ActualValue; }
|
---|
| 92 | }
|
---|
| 93 | public ISymbolicExpressionTreeInterpreter SymbolicExpressionTreeInterpreter {
|
---|
| 94 | get { return SymbolicExpressionTreeInterpreterParameter.ActualValue; }
|
---|
| 95 | }
|
---|
| 96 | public ISymbolicRegressionEvaluator Evaluator {
|
---|
| 97 | get { return EvaluatorParameter.ActualValue; }
|
---|
| 98 | }
|
---|
| 99 | public DataAnalysisProblemData ProblemData {
|
---|
| 100 | get { return ProblemDataParameter.ActualValue; }
|
---|
| 101 | }
|
---|
| 102 | public IntValue ValidiationSamplesStart {
|
---|
| 103 | get { return ValidationSamplesStartParameter.ActualValue; }
|
---|
| 104 | }
|
---|
| 105 | public IntValue ValidationSamplesEnd {
|
---|
| 106 | get { return ValidationSamplesEndParameter.ActualValue; }
|
---|
| 107 | }
|
---|
| 108 | public PercentValue RelativeNumberOfEvaluatedSamples {
|
---|
| 109 | get { return RelativeNumberOfEvaluatedSamplesParameter.Value; }
|
---|
| 110 | }
|
---|
| 111 |
|
---|
| 112 | public DoubleValue UpperEstimationLimit {
|
---|
| 113 | get { return UpperEstimationLimitParameter.ActualValue; }
|
---|
| 114 | }
|
---|
| 115 | public DoubleValue LowerEstimationLimit {
|
---|
| 116 | get { return LowerEstimationLimitParameter.ActualValue; }
|
---|
| 117 | }
|
---|
| 118 | #endregion
|
---|
| 119 |
|
---|
| 120 | [StorableConstructor]
|
---|
| 121 | protected SymbolicRegressionValidationAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
| 122 | protected SymbolicRegressionValidationAnalyzer(SymbolicRegressionValidationAnalyzer original, Cloner cloner) : base(original, cloner) { }
|
---|
| 123 | public SymbolicRegressionValidationAnalyzer()
|
---|
| 124 | : base() {
|
---|
| 125 | Parameters.Add(new LookupParameter<IRandom>(RandomParameterName, "The random generator to use."));
|
---|
| 126 | Parameters.Add(new LookupParameter<ISymbolicRegressionEvaluator>(EvaluatorParameterName, "The evaluator which should be used to evaluate the solution on the validation set."));
|
---|
| 127 | Parameters.Add(new ScopeTreeLookupParameter<SymbolicExpressionTree>(SymbolicExpressionTreeParameterName, "The symbolic expression trees to analyze."));
|
---|
| 128 | Parameters.Add(new ValueLookupParameter<ISymbolicExpressionTreeInterpreter>(SymbolicExpressionTreeInterpreterParameterName, "The interpreter that should be used for the analysis of symbolic expression trees."));
|
---|
| 129 | Parameters.Add(new ValueLookupParameter<DataAnalysisProblemData>(ProblemDataParameterName, "The problem data for which the symbolic expression tree is a solution."));
|
---|
| 130 | Parameters.Add(new ValueLookupParameter<IntValue>(ValidationSamplesStartParameterName, "The first index of the validation partition of the data set."));
|
---|
| 131 | Parameters.Add(new ValueLookupParameter<IntValue>(ValidationSamplesEndParameterName, "The last index of the validation partition of the data set."));
|
---|
| 132 | Parameters.Add(new ValueParameter<PercentValue>(RelativeNumberOfEvaluatedSamplesParameterName, "The relative number of samples of the dataset partition, which should be randomly chosen for evaluation between the start and end index.", new PercentValue(1)));
|
---|
| 133 | Parameters.Add(new ValueLookupParameter<DoubleValue>(UpperEstimationLimitParameterName, "The upper estimation limit that was set for the evaluation of the symbolic expression trees."));
|
---|
| 134 | Parameters.Add(new ValueLookupParameter<DoubleValue>(LowerEstimationLimitParameterName, "The lower estimation limit that was set for the evaluation of the symbolic expression trees."));
|
---|
| 135 | }
|
---|
| 136 |
|
---|
| 137 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 138 | private void AfterDeserialization() { }
|
---|
| 139 |
|
---|
| 140 | public override IOperation Apply() {
|
---|
| 141 | var trees = SymbolicExpressionTree.ToArray();
|
---|
| 142 |
|
---|
| 143 | string targetVariable = ProblemData.TargetVariable.Value;
|
---|
| 144 |
|
---|
| 145 | // select a random subset of rows in the validation set
|
---|
| 146 | int validationStart = ValidiationSamplesStart.Value;
|
---|
| 147 | int validationEnd = ValidationSamplesEnd.Value;
|
---|
| 148 | int seed = Random.Next();
|
---|
| 149 | int count = (int)((validationEnd - validationStart) * RelativeNumberOfEvaluatedSamples.Value);
|
---|
| 150 | if (count == 0) count = 1;
|
---|
| 151 | IEnumerable<int> rows = RandomEnumerable.SampleRandomNumbers(seed, validationStart, validationEnd, count)
|
---|
| 152 | .Where(row => row < ProblemData.TestSamplesStart.Value || ProblemData.TestSamplesEnd.Value <= row);
|
---|
| 153 |
|
---|
| 154 | double upperEstimationLimit = UpperEstimationLimit != null ? UpperEstimationLimit.Value : double.PositiveInfinity;
|
---|
| 155 | double lowerEstimationLimit = LowerEstimationLimit != null ? LowerEstimationLimit.Value : double.NegativeInfinity;
|
---|
| 156 |
|
---|
| 157 | double[] validationQuality = new double[trees.Count()];
|
---|
| 158 | for (int i = 0; i < validationQuality.Length; i++) {
|
---|
| 159 | validationQuality[i] = Evaluator.Evaluate(SymbolicExpressionTreeInterpreter, trees[i],
|
---|
| 160 | lowerEstimationLimit, upperEstimationLimit,
|
---|
| 161 | ProblemData.Dataset, targetVariable,
|
---|
| 162 | rows);
|
---|
| 163 | }
|
---|
| 164 |
|
---|
| 165 | Analyze(trees, validationQuality);
|
---|
| 166 | return base.Apply();
|
---|
| 167 | }
|
---|
| 168 |
|
---|
| 169 | protected abstract void Analyze(SymbolicExpressionTree[] trees, double[] validationQuality);
|
---|
| 170 | }
|
---|
| 171 | }
|
---|