Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Problems.DataAnalysis.Regression/3.3/Symbolic/Analyzers/SymbolicRegressionSolutionLinearScaler.cs @ 4054

Last change on this file since 4054 was 3986, checked in by gkronber, 14 years ago

Moved code for the manipulation of SymbolicExpressionTrees to include the linear scaling calculation into a static method. #938

File size: 5.6 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Linq;
23using HeuristicLab.Common;
24using HeuristicLab.Core;
25using HeuristicLab.Data;
26using HeuristicLab.Operators;
27using HeuristicLab.Optimization;
28using HeuristicLab.Parameters;
29using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
30using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
31using HeuristicLab.Problems.DataAnalysis.Regression.Symbolic;
32using HeuristicLab.Problems.DataAnalysis.Symbolic;
33using System.Collections.Generic;
34using HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols;
35using HeuristicLab.Problems.DataAnalysis;
36
37namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic.Analyzers {
38  /// <summary>
39  /// An operator that creates a linearly transformed symbolic regression solution (given alpha and beta).
40  /// </summary>
41  [Item("SymbolicRegressionSolutionLinearScaler", "An operator that creates a linearly transformed symbolic regression solution (given alpha and beta).")]
42  [StorableClass]
43  public sealed class SymbolicRegressionSolutionLinearScaler : SingleSuccessorOperator {
44    private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
45    private const string ScaledSymbolicExpressionTreeParameterName = "ScaledSymbolicExpressionTree";
46    private const string AlphaParameterName = "Alpha";
47    private const string BetaParameterName = "Beta";
48
49    public ILookupParameter<SymbolicExpressionTree> SymbolicExpressionTreeParameter {
50      get { return (ILookupParameter<SymbolicExpressionTree>)Parameters[SymbolicExpressionTreeParameterName]; }
51    }
52    public ILookupParameter<SymbolicExpressionTree> ScaledSymbolicExpressionTreeParameter {
53      get { return (ILookupParameter<SymbolicExpressionTree>)Parameters[ScaledSymbolicExpressionTreeParameterName]; }
54    }
55    public ILookupParameter<DoubleValue> AlphaParameter {
56      get { return (ILookupParameter<DoubleValue>)Parameters[AlphaParameterName]; }
57    }
58    public ILookupParameter<DoubleValue> BetaParameter {
59      get { return (ILookupParameter<DoubleValue>)Parameters[BetaParameterName]; }
60    }
61
62    public SymbolicRegressionSolutionLinearScaler()
63      : base() {
64      Parameters.Add(new LookupParameter<SymbolicExpressionTree>(SymbolicExpressionTreeParameterName, "The symbolic expression trees to transform."));
65      Parameters.Add(new LookupParameter<SymbolicExpressionTree>(ScaledSymbolicExpressionTreeParameterName, "The resulting symbolic expression trees after transformation."));
66      Parameters.Add(new LookupParameter<DoubleValue>(AlphaParameterName, "Alpha parameter for linear transformation."));
67      Parameters.Add(new LookupParameter<DoubleValue>(BetaParameterName, "Beta parameter for linear transformation."));
68    }
69
70    public override IOperation Apply() {
71      SymbolicExpressionTree tree = SymbolicExpressionTreeParameter.ActualValue;
72      DoubleValue alpha = AlphaParameter.ActualValue;
73      DoubleValue beta = BetaParameter.ActualValue;
74      if (alpha != null && beta != null) {
75        ScaledSymbolicExpressionTreeParameter.ActualValue = Scale(tree, alpha.Value, beta.Value);
76      } else {
77        // alpha or beta parameter not available => do not scale tree
78        ScaledSymbolicExpressionTreeParameter.ActualValue = tree;
79      }
80
81      return base.Apply();
82    }
83
84    public static SymbolicExpressionTree Scale(SymbolicExpressionTree original, double alpha, double beta) {
85      var mainBranch = original.Root.SubTrees[0].SubTrees[0];
86      var scaledMainBranch = MakeSum(MakeProduct(beta, mainBranch), alpha);
87
88      // remove the main branch before cloning to prevent cloning of sub-trees
89      original.Root.SubTrees[0].RemoveSubTree(0);
90      var scaledTree = (SymbolicExpressionTree)original.Clone();
91      // insert main branch into the original tree again
92      original.Root.SubTrees[0].InsertSubTree(0, mainBranch);
93      // insert the scaled main branch into the cloned tree
94      scaledTree.Root.SubTrees[0].InsertSubTree(0, scaledMainBranch);
95      return scaledTree;
96    }
97
98    private static SymbolicExpressionTreeNode MakeSum(SymbolicExpressionTreeNode treeNode, double alpha) {
99      var node = (new Addition()).CreateTreeNode();
100      var alphaConst = MakeConstant(alpha);
101      node.AddSubTree(treeNode);
102      node.AddSubTree(alphaConst);
103      return node;
104    }
105
106    private static SymbolicExpressionTreeNode MakeProduct(double beta, SymbolicExpressionTreeNode treeNode) {
107      var node = (new Multiplication()).CreateTreeNode();
108      var betaConst = MakeConstant(beta);
109      node.AddSubTree(treeNode);
110      node.AddSubTree(betaConst);
111      return node;
112    }
113
114    private static SymbolicExpressionTreeNode MakeConstant(double c) {
115      var node = (ConstantTreeNode)(new Constant()).CreateTreeNode();
116      node.Value = c;
117      return node;
118    }
119  }
120}
Note: See TracBrowser for help on using the repository browser.