Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Problems.DataAnalysis.Regression/3.3/Symbolic/Analyzers/SymbolicRegressionSolutionLinearScaler.cs @ 3915

Last change on this file since 3915 was 3801, checked in by gkronber, 14 years ago

Fixed linear scaler to work also when no scaling parameters are given. #938

File size: 5.4 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Linq;
23using HeuristicLab.Common;
24using HeuristicLab.Core;
25using HeuristicLab.Data;
26using HeuristicLab.Operators;
27using HeuristicLab.Optimization;
28using HeuristicLab.Parameters;
29using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
30using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
31using HeuristicLab.Problems.DataAnalysis.Regression.Symbolic;
32using HeuristicLab.Problems.DataAnalysis.Symbolic;
33using System.Collections.Generic;
34using HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols;
35using HeuristicLab.Problems.DataAnalysis;
36
37namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic.Analyzers {
38  /// <summary>
39  /// An operator that creates a linearly transformed symbolic regression solution (given alpha and beta).
40  /// </summary>
41  [Item("SymbolicRegressionSolutionLinearScaler", "An operator that creates a linearly transformed symbolic regression solution (given alpha and beta).")]
42  [StorableClass]
43  public sealed class SymbolicRegressionSolutionLinearScaler : SingleSuccessorOperator {
44    private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
45    private const string ScaledSymbolicExpressionTreeParameterName = "ScaledSymbolicExpressionTree";
46    private const string AlphaParameterName = "Alpha";
47    private const string BetaParameterName = "Beta";
48
49    public ILookupParameter<SymbolicExpressionTree> SymbolicExpressionTreeParameter {
50      get { return (ILookupParameter<SymbolicExpressionTree>)Parameters[SymbolicExpressionTreeParameterName]; }
51    }
52    public ILookupParameter<SymbolicExpressionTree> ScaledSymbolicExpressionTreeParameter {
53      get { return (ILookupParameter<SymbolicExpressionTree>)Parameters[ScaledSymbolicExpressionTreeParameterName]; }
54    }
55    public ILookupParameter<DoubleValue> AlphaParameter {
56      get { return (ILookupParameter<DoubleValue>)Parameters[AlphaParameterName]; }
57    }
58    public ILookupParameter<DoubleValue> BetaParameter {
59      get { return (ILookupParameter<DoubleValue>)Parameters[BetaParameterName]; }
60    }
61
62    public SymbolicRegressionSolutionLinearScaler()
63      : base() {
64      Parameters.Add(new LookupParameter<SymbolicExpressionTree>(SymbolicExpressionTreeParameterName, "The symbolic expression trees to transform."));
65      Parameters.Add(new LookupParameter<SymbolicExpressionTree>(ScaledSymbolicExpressionTreeParameterName, "The resulting symbolic expression trees after transformation."));
66      Parameters.Add(new LookupParameter<DoubleValue>(AlphaParameterName, "Alpha parameter for linear transformation."));
67      Parameters.Add(new LookupParameter<DoubleValue>(BetaParameterName, "Beta parameter for linear transformation."));
68    }
69
70    public override IOperation Apply() {
71      SymbolicExpressionTree tree = SymbolicExpressionTreeParameter.ActualValue;
72      DoubleValue alpha = AlphaParameter.ActualValue;
73      DoubleValue beta = BetaParameter.ActualValue;
74      if (alpha != null && beta != null) {
75        var mainBranch = tree.Root.SubTrees[0].SubTrees[0];
76        var scaledMainBranch = MakeSum(MakeProduct(beta.Value, mainBranch), alpha.Value);
77
78        // remove the main branch before cloning to prevent cloning of sub-trees
79        tree.Root.SubTrees[0].RemoveSubTree(0);
80        var scaledTree = (SymbolicExpressionTree)tree.Clone();
81        // insert main branch into the original tree again
82        tree.Root.SubTrees[0].InsertSubTree(0, mainBranch);
83        // insert the scaled main branch into the cloned tree
84        scaledTree.Root.SubTrees[0].InsertSubTree(0, scaledMainBranch);
85        ScaledSymbolicExpressionTreeParameter.ActualValue = scaledTree;
86      } else {
87        // alpha or beta parameter not available => do not scale tree
88        ScaledSymbolicExpressionTreeParameter.ActualValue = tree;
89      }
90     
91      return base.Apply();
92    }
93
94    private SymbolicExpressionTreeNode MakeSum(SymbolicExpressionTreeNode treeNode, double alpha) {
95      var node = (new Addition()).CreateTreeNode();
96      var alphaConst = MakeConstant(alpha);
97      node.AddSubTree(treeNode);
98      node.AddSubTree(alphaConst);
99      return node;
100    }
101
102    private SymbolicExpressionTreeNode MakeProduct(double beta, SymbolicExpressionTreeNode treeNode) {
103      var node = (new Multiplication()).CreateTreeNode();
104      var betaConst = MakeConstant(beta);
105      node.AddSubTree(treeNode);
106      node.AddSubTree(betaConst);
107      return node;
108    }
109
110    private SymbolicExpressionTreeNode MakeConstant(double c) {
111      var node = (ConstantTreeNode)(new Constant()).CreateTreeNode();
112      node.Value = c;
113      return node;
114    }
115  }
116}
Note: See TracBrowser for help on using the repository browser.