Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Problems.DataAnalysis.Regression/3.3/Symbolic/Analyzers/SymbolicRegressionMeanSquaredErrorCalculator.cs @ 3905

Last change on this file since 3905 was 3683, checked in by gkronber, 15 years ago

Added 'special treatment' of operators that use LookupParameters instead of ScopeTreeLookupParameters contained in analyzers. #999

File size: 7.4 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Linq;
23using HeuristicLab.Common;
24using HeuristicLab.Core;
25using HeuristicLab.Data;
26using HeuristicLab.Operators;
27using HeuristicLab.Optimization;
28using HeuristicLab.Parameters;
29using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
30using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
31using HeuristicLab.Problems.DataAnalysis.Regression.Symbolic;
32using HeuristicLab.Problems.DataAnalysis.Symbolic;
33using System.Collections.Generic;
34using HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols;
35using HeuristicLab.Problems.DataAnalysis;
36
37namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic.Analyzers {
38  /// <summary>
39  /// An operator that calculates the mean squared error of a symbolic regression solution encoded as a symbolic expression tree.
40  /// </summary>
41  [Item("SymbolicRegressionMeanSquaredErrorCalculator", "An operator that calculates the mean squared error of a symbolic regression solution encoded as a symbolic expression tree.")]
42  [StorableClass]
43  public sealed class SymbolicRegressionMeanSquaredErrorCalculator : AlgorithmOperator {
44    private const string SymbolicExpressionTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter";
45    private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
46    private const string ProblemDataParameterName = "ProblemData";
47    private const string QualityParameterName = "Mean Squared Error";
48    private const string SamplesStartParameterName = "SamplesStart";
49    private const string SamplesEndParameterName = "SamplesEnd";
50    private const string UpperEstimationLimitParameterName = "UpperEstimationLimit";
51    private const string LowerEstimationLimitParameterName = "LowerEstimationLimit";
52
53    public ScopeTreeLookupParameter<SymbolicExpressionTree> SymbolicExpressionTreeParameter {
54      get { return (ScopeTreeLookupParameter<SymbolicExpressionTree>)Parameters[SymbolicExpressionTreeParameterName]; }
55    }
56    public IValueLookupParameter<ISymbolicExpressionTreeInterpreter> SymbolicExpressionTreeInterpreterParameter {
57      get { return (IValueLookupParameter<ISymbolicExpressionTreeInterpreter>)Parameters[SymbolicExpressionTreeInterpreterParameterName]; }
58    }
59    public IValueLookupParameter<DataAnalysisProblemData> ProblemDataParameter {
60      get { return (IValueLookupParameter<DataAnalysisProblemData>)Parameters[ProblemDataParameterName]; }
61    }
62    public IValueLookupParameter<IntValue> SamplesStartParameter {
63      get { return (IValueLookupParameter<IntValue>)Parameters[SamplesStartParameterName]; }
64    }
65    public IValueLookupParameter<IntValue> SamplesEndParameter {
66      get { return (IValueLookupParameter<IntValue>)Parameters[SamplesEndParameterName]; }
67    }
68    public IValueLookupParameter<DoubleValue> UpperEstimationLimitParameter {
69      get { return (IValueLookupParameter<DoubleValue>)Parameters[UpperEstimationLimitParameterName]; }
70    }
71    public IValueLookupParameter<DoubleValue> LowerEstimationLimitParameter {
72      get { return (IValueLookupParameter<DoubleValue>)Parameters[LowerEstimationLimitParameterName]; }
73    }
74    public ILookupParameter<DoubleValue> QualityParameter {
75      get { return (ILookupParameter<DoubleValue>)Parameters[QualityParameterName]; }
76    }
77
78    public SymbolicRegressionMeanSquaredErrorCalculator()
79      : base() {
80      Parameters.Add(new ValueLookupParameter<ISymbolicExpressionTreeInterpreter>(SymbolicExpressionTreeInterpreterParameterName, "The interpreter that should be used to calculate the output values of the symbolic expression tree."));
81      Parameters.Add(new ScopeTreeLookupParameter<SymbolicExpressionTree>(SymbolicExpressionTreeParameterName, "The symbolic expression tree to analyze."));
82      Parameters.Add(new ValueLookupParameter<DataAnalysisProblemData>(ProblemDataParameterName, "The problem data containing the input varaibles for the symbolic regression problem."));
83      Parameters.Add(new ValueLookupParameter<IntValue>(SamplesStartParameterName, "The first index of the data set partition on which the model quality values should be calculated."));
84      Parameters.Add(new ValueLookupParameter<IntValue>(SamplesEndParameterName, "The first index of the data set partition on which the model quality values should be calculated."));
85      Parameters.Add(new ValueLookupParameter<DoubleValue>(UpperEstimationLimitParameterName, "The upper limit that should be used as cut off value for the output values of symbolic expression trees."));
86      Parameters.Add(new ValueLookupParameter<DoubleValue>(LowerEstimationLimitParameterName, "The lower limit that should be used as cut off value for the output values of symbolic expression trees."));
87      Parameters.Add(new ValueLookupParameter<DoubleValue>(QualityParameterName, "The mean squared error value of the output of the model."));
88
89
90      SymbolicRegressionMeanSquaredErrorEvaluator evaluator = new SymbolicRegressionMeanSquaredErrorEvaluator();
91      evaluator.LowerEstimationLimitParameter.ActualName = LowerEstimationLimitParameter.Name;
92      evaluator.QualityParameter.ActualName = QualityParameter.Name;
93      evaluator.RegressionProblemDataParameter.ActualName = ProblemDataParameter.Name;
94      evaluator.SamplesEndParameter.ActualName = SamplesEndParameter.Name;
95      evaluator.SamplesStartParameter.ActualName = SamplesStartParameter.Name;
96      evaluator.SymbolicExpressionTreeParameter.ActualName = SymbolicExpressionTreeParameter.Name;
97      evaluator.UpperEstimationLimitParameter.ActualName = UpperEstimationLimitParameter.Name;
98
99      OperatorGraph.InitialOperator = evaluator;
100      evaluator.Successor = null;
101    }
102
103    // need to create custom operations for each solution scope (this has to be adapted on basis of the depth value of SymbolicExpressionTreeParameter)
104    public override IOperation Apply() {
105      var scopes = GetScopesOnLevel(ExecutionContext.Scope, SymbolicExpressionTreeParameter.Depth);
106      OperationCollection operations = new OperationCollection();
107      foreach (IScope treeScopes in scopes) {
108        operations.Add(ExecutionContext.CreateChildOperation(OperatorGraph.InitialOperator, treeScopes));
109      }
110      if (Successor != null) operations.Add(ExecutionContext.CreateOperation(Successor));
111      return operations;
112    }
113
114    private IEnumerable<IScope> GetScopesOnLevel(IScope scope, int d) {
115      if (d == 0) yield return scope;
116      else {
117        foreach (IScope subScope in scope.SubScopes) {
118          foreach (IScope scopesOfSubScope in GetScopesOnLevel(subScope, d - 1)) {
119            yield return scopesOfSubScope;
120          }
121        }
122      }
123    }
124  }
125}
Note: See TracBrowser for help on using the repository browser.