1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using HeuristicLab.Analysis;
|
---|
23 | using HeuristicLab.Common;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HeuristicLab.Data;
|
---|
26 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
27 | using HeuristicLab.Optimization;
|
---|
28 | using HeuristicLab.Parameters;
|
---|
29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
30 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
31 |
|
---|
32 | namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic.Analyzers {
|
---|
33 | /// <summary>
|
---|
34 | /// An operator that analyzes the validation best scaled symbolic regression solution.
|
---|
35 | /// </summary>
|
---|
36 | [Item("FixedValidationBestScaledSymbolicRegressionSolutionAnalyzer", "An operator that analyzes the validation best scaled symbolic regression solution.")]
|
---|
37 | [StorableClass]
|
---|
38 | public sealed class FixedValidationBestScaledSymbolicRegressionSolutionAnalyzer : SymbolicRegressionValidationAnalyzer, ISymbolicRegressionAnalyzer {
|
---|
39 | private const string ApplyLinearScalingParameterName = "ApplyLinearScaling";
|
---|
40 | private const string MaximizationParameterName = "Maximization";
|
---|
41 | private const string CalculateSolutionComplexityParameterName = "CalculateSolutionComplexity";
|
---|
42 | private const string BestSolutionParameterName = "Best solution (validation)";
|
---|
43 | private const string BestSolutionQualityParameterName = "Best solution quality (validation)";
|
---|
44 | private const string BestSolutionLengthParameterName = "Best solution length (validation)";
|
---|
45 | private const string BestSolutionHeightParameterName = "Best solution height (validiation)";
|
---|
46 | private const string CurrentBestValidationQualityParameterName = "Current best validation quality";
|
---|
47 | private const string BestSolutionQualityValuesParameterName = "Validation Quality";
|
---|
48 | private const string ResultsParameterName = "Results";
|
---|
49 | private const string VariableFrequenciesParameterName = "VariableFrequencies";
|
---|
50 | private const string BestKnownQualityParameterName = "BestKnownQuality";
|
---|
51 | private const string GenerationsParameterName = "Generations";
|
---|
52 |
|
---|
53 | #region parameter properties
|
---|
54 | public ILookupParameter<BoolValue> MaximizationParameter {
|
---|
55 | get { return (ILookupParameter<BoolValue>)Parameters[MaximizationParameterName]; }
|
---|
56 | }
|
---|
57 | public IValueParameter<BoolValue> CalculateSolutionComplexityParameter {
|
---|
58 | get { return (IValueParameter<BoolValue>)Parameters[CalculateSolutionComplexityParameterName]; }
|
---|
59 | }
|
---|
60 | public ILookupParameter<SymbolicRegressionSolution> BestSolutionParameter {
|
---|
61 | get { return (ILookupParameter<SymbolicRegressionSolution>)Parameters[BestSolutionParameterName]; }
|
---|
62 | }
|
---|
63 | public ILookupParameter<IntValue> GenerationsParameter {
|
---|
64 | get { return (ILookupParameter<IntValue>)Parameters[GenerationsParameterName]; }
|
---|
65 | }
|
---|
66 | public ILookupParameter<DoubleValue> BestSolutionQualityParameter {
|
---|
67 | get { return (ILookupParameter<DoubleValue>)Parameters[BestSolutionQualityParameterName]; }
|
---|
68 | }
|
---|
69 | public ILookupParameter<IntValue> BestSolutionLengthParameter {
|
---|
70 | get { return (ILookupParameter<IntValue>)Parameters[BestSolutionLengthParameterName]; }
|
---|
71 | }
|
---|
72 | public ILookupParameter<IntValue> BestSolutionHeightParameter {
|
---|
73 | get { return (ILookupParameter<IntValue>)Parameters[BestSolutionHeightParameterName]; }
|
---|
74 | }
|
---|
75 | public ILookupParameter<ResultCollection> ResultsParameter {
|
---|
76 | get { return (ILookupParameter<ResultCollection>)Parameters[ResultsParameterName]; }
|
---|
77 | }
|
---|
78 | public ILookupParameter<DoubleValue> BestKnownQualityParameter {
|
---|
79 | get { return (ILookupParameter<DoubleValue>)Parameters[BestKnownQualityParameterName]; }
|
---|
80 | }
|
---|
81 | public ILookupParameter<DataTable> VariableFrequenciesParameter {
|
---|
82 | get { return (ILookupParameter<DataTable>)Parameters[VariableFrequenciesParameterName]; }
|
---|
83 | }
|
---|
84 | public IValueLookupParameter<BoolValue> ApplyLinearScalingParameter {
|
---|
85 | get { return (IValueLookupParameter<BoolValue>)Parameters[ApplyLinearScalingParameterName]; }
|
---|
86 | }
|
---|
87 | #endregion
|
---|
88 | #region properties
|
---|
89 | public BoolValue Maximization {
|
---|
90 | get { return MaximizationParameter.ActualValue; }
|
---|
91 | }
|
---|
92 | public BoolValue CalculateSolutionComplexity {
|
---|
93 | get { return CalculateSolutionComplexityParameter.Value; }
|
---|
94 | set { CalculateSolutionComplexityParameter.Value = value; }
|
---|
95 | }
|
---|
96 | public ResultCollection Results {
|
---|
97 | get { return ResultsParameter.ActualValue; }
|
---|
98 | }
|
---|
99 | public DataTable VariableFrequencies {
|
---|
100 | get { return VariableFrequenciesParameter.ActualValue; }
|
---|
101 | }
|
---|
102 | public IntValue Generations {
|
---|
103 | get { return GenerationsParameter.ActualValue; }
|
---|
104 | }
|
---|
105 | public DoubleValue BestSolutionQuality {
|
---|
106 | get { return BestSolutionQualityParameter.ActualValue; }
|
---|
107 | }
|
---|
108 | public IntValue BestSolutionLength {
|
---|
109 | get { return BestSolutionLengthParameter.ActualValue; }
|
---|
110 | set { BestSolutionLengthParameter.ActualValue = value; }
|
---|
111 | }
|
---|
112 | public IntValue BestSolutionHeight {
|
---|
113 | get { return BestSolutionHeightParameter.ActualValue; }
|
---|
114 | set { BestSolutionHeightParameter.ActualValue = value; }
|
---|
115 | }
|
---|
116 | public BoolValue ApplyLinearScaling {
|
---|
117 | get { return ApplyLinearScalingParameter.ActualValue; }
|
---|
118 | set { ApplyLinearScalingParameter.ActualValue = value; }
|
---|
119 | }
|
---|
120 | #endregion
|
---|
121 |
|
---|
122 | [StorableConstructor]
|
---|
123 | private FixedValidationBestScaledSymbolicRegressionSolutionAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
124 | private FixedValidationBestScaledSymbolicRegressionSolutionAnalyzer(FixedValidationBestScaledSymbolicRegressionSolutionAnalyzer original, Cloner cloner) : base(original, cloner) { }
|
---|
125 | public FixedValidationBestScaledSymbolicRegressionSolutionAnalyzer()
|
---|
126 | : base() {
|
---|
127 | Parameters.Add(new ValueLookupParameter<BoolValue>(ApplyLinearScalingParameterName, "The switch determines if the best solution should be linearly scaled on the whole training set.", new BoolValue(true)));
|
---|
128 | Parameters.Add(new LookupParameter<BoolValue>(MaximizationParameterName, "The direction of optimization."));
|
---|
129 | Parameters.Add(new ValueParameter<BoolValue>(CalculateSolutionComplexityParameterName, "Determines if the length and height of the validation best solution should be calculated.", new BoolValue(true)));
|
---|
130 | Parameters.Add(new LookupParameter<SymbolicRegressionSolution>(BestSolutionParameterName, "The best symbolic regression solution."));
|
---|
131 | Parameters.Add(new LookupParameter<IntValue>(GenerationsParameterName, "The number of generations calculated so far."));
|
---|
132 | Parameters.Add(new LookupParameter<DoubleValue>(BestSolutionQualityParameterName, "The quality of the best symbolic regression solution."));
|
---|
133 | Parameters.Add(new LookupParameter<IntValue>(BestSolutionLengthParameterName, "The length of the best symbolic regression solution."));
|
---|
134 | Parameters.Add(new LookupParameter<IntValue>(BestSolutionHeightParameterName, "The height of the best symbolic regression solution."));
|
---|
135 | Parameters.Add(new LookupParameter<ResultCollection>(ResultsParameterName, "The result collection where the best symbolic regression solution should be stored."));
|
---|
136 | Parameters.Add(new LookupParameter<DoubleValue>(BestKnownQualityParameterName, "The best known (validation) quality achieved on the data set."));
|
---|
137 | Parameters.Add(new LookupParameter<DataTable>(VariableFrequenciesParameterName, "The variable frequencies table to use for the calculation of variable impacts"));
|
---|
138 | }
|
---|
139 |
|
---|
140 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
141 | return new FixedValidationBestScaledSymbolicRegressionSolutionAnalyzer(this, cloner);
|
---|
142 | }
|
---|
143 |
|
---|
144 | [StorableHook(HookType.AfterDeserialization)]
|
---|
145 | private void AfterDeserialization() {
|
---|
146 | #region compatibility remove before releasing 3.4
|
---|
147 | if (!Parameters.ContainsKey("Evaluator")) {
|
---|
148 | Parameters.Add(new LookupParameter<ISymbolicRegressionEvaluator>("Evaluator", "The evaluator which should be used to evaluate the solution on the validation set."));
|
---|
149 | }
|
---|
150 | if (!Parameters.ContainsKey(MaximizationParameterName)) {
|
---|
151 | Parameters.Add(new LookupParameter<BoolValue>(MaximizationParameterName, "The direction of optimization."));
|
---|
152 | }
|
---|
153 | if (!Parameters.ContainsKey(CalculateSolutionComplexityParameterName)) {
|
---|
154 | Parameters.Add(new ValueParameter<BoolValue>(CalculateSolutionComplexityParameterName, "Determines if the length and height of the validation best solution should be calculated.", new BoolValue(false)));
|
---|
155 | }
|
---|
156 | if (!Parameters.ContainsKey(BestSolutionLengthParameterName)) {
|
---|
157 | Parameters.Add(new LookupParameter<IntValue>(BestSolutionLengthParameterName, "The length of the best symbolic regression solution."));
|
---|
158 | }
|
---|
159 | if (!Parameters.ContainsKey(BestSolutionHeightParameterName)) {
|
---|
160 | Parameters.Add(new LookupParameter<IntValue>(BestSolutionHeightParameterName, "The height of the best symbolic regression solution."));
|
---|
161 | }
|
---|
162 | if (!Parameters.ContainsKey(ApplyLinearScalingParameterName)) {
|
---|
163 | Parameters.Add(new ValueLookupParameter<BoolValue>(ApplyLinearScalingParameterName, "The switch determines if the best solution should be linearly scaled on the whole training set.", new BoolValue(true)));
|
---|
164 | }
|
---|
165 | #endregion
|
---|
166 | }
|
---|
167 |
|
---|
168 | protected override void Analyze(SymbolicExpressionTree[] trees, double[] validationQuality) {
|
---|
169 | double bestQuality = Maximization.Value ? double.NegativeInfinity : double.PositiveInfinity;
|
---|
170 | SymbolicExpressionTree bestTree = null;
|
---|
171 |
|
---|
172 | for (int i = 0; i < trees.Length; i++) {
|
---|
173 | double quality = validationQuality[i];
|
---|
174 | if ((Maximization.Value && quality > bestQuality) ||
|
---|
175 | (!Maximization.Value && quality < bestQuality)) {
|
---|
176 | bestQuality = quality;
|
---|
177 | bestTree = trees[i];
|
---|
178 | }
|
---|
179 | }
|
---|
180 |
|
---|
181 | // if the best validation tree is better than the current best solution => update
|
---|
182 | bool newBest =
|
---|
183 | BestSolutionQuality == null ||
|
---|
184 | (Maximization.Value && bestQuality > BestSolutionQuality.Value) ||
|
---|
185 | (!Maximization.Value && bestQuality < BestSolutionQuality.Value);
|
---|
186 | if (newBest) {
|
---|
187 | double upperEstimationLimit = UpperEstimationLimit != null ? UpperEstimationLimit.Value : double.PositiveInfinity;
|
---|
188 | double lowerEstimationLimit = LowerEstimationLimit != null ? LowerEstimationLimit.Value : double.NegativeInfinity;
|
---|
189 | string targetVariable = ProblemData.TargetVariable.Value;
|
---|
190 |
|
---|
191 | if (ApplyLinearScaling.Value) {
|
---|
192 | // calculate scaling parameters and only for the best tree using the full training set
|
---|
193 | double alpha, beta;
|
---|
194 | SymbolicRegressionScaledMeanSquaredErrorEvaluator.Calculate(SymbolicExpressionTreeInterpreter, bestTree,
|
---|
195 | lowerEstimationLimit, upperEstimationLimit,
|
---|
196 | ProblemData.Dataset, targetVariable,
|
---|
197 | ProblemData.TrainingIndizes, out beta, out alpha);
|
---|
198 |
|
---|
199 | // scale tree for solution
|
---|
200 | bestTree = SymbolicRegressionSolutionLinearScaler.Scale(bestTree, alpha, beta);
|
---|
201 | }
|
---|
202 | var model = new SymbolicRegressionModel((ISymbolicExpressionTreeInterpreter)SymbolicExpressionTreeInterpreter.Clone(),
|
---|
203 | bestTree);
|
---|
204 | var solution = new SymbolicRegressionSolution((DataAnalysisProblemData)ProblemData.Clone(), model, lowerEstimationLimit, upperEstimationLimit);
|
---|
205 | solution.Name = BestSolutionParameterName;
|
---|
206 | solution.Description = "Best solution on validation partition found over the whole run.";
|
---|
207 |
|
---|
208 | BestSolutionParameter.ActualValue = solution;
|
---|
209 | BestSolutionQualityParameter.ActualValue = new DoubleValue(bestQuality);
|
---|
210 |
|
---|
211 | if (CalculateSolutionComplexity.Value) {
|
---|
212 | BestSolutionLength = new IntValue(solution.Model.SymbolicExpressionTree.Size);
|
---|
213 | BestSolutionHeight = new IntValue(solution.Model.SymbolicExpressionTree.Height);
|
---|
214 | if (!Results.ContainsKey(BestSolutionLengthParameterName)) {
|
---|
215 | Results.Add(new Result(BestSolutionLengthParameterName, "Length of the best solution on the validation set", new IntValue()));
|
---|
216 | Results.Add(new Result(BestSolutionHeightParameterName, "Height of the best solution on the validation set", new IntValue()));
|
---|
217 | }
|
---|
218 | Results[BestSolutionLengthParameterName].Value = BestSolutionLength;
|
---|
219 | Results[BestSolutionHeightParameterName].Value = BestSolutionHeight;
|
---|
220 | }
|
---|
221 |
|
---|
222 | BestSymbolicRegressionSolutionAnalyzer.UpdateBestSolutionResults(solution, ProblemData, Results, Generations, VariableFrequencies);
|
---|
223 | }
|
---|
224 |
|
---|
225 | if (!Results.ContainsKey(BestSolutionQualityValuesParameterName)) {
|
---|
226 | Results.Add(new Result(BestSolutionQualityValuesParameterName, new DataTable(BestSolutionQualityValuesParameterName, BestSolutionQualityValuesParameterName)));
|
---|
227 | Results.Add(new Result(BestSolutionQualityParameterName, new DoubleValue()));
|
---|
228 | Results.Add(new Result(CurrentBestValidationQualityParameterName, new DoubleValue()));
|
---|
229 | }
|
---|
230 | Results[BestSolutionQualityParameterName].Value = new DoubleValue(BestSolutionQualityParameter.ActualValue.Value);
|
---|
231 | Results[CurrentBestValidationQualityParameterName].Value = new DoubleValue(bestQuality);
|
---|
232 |
|
---|
233 | DataTable validationValues = (DataTable)Results[BestSolutionQualityValuesParameterName].Value;
|
---|
234 | AddValue(validationValues, BestSolutionQualityParameter.ActualValue.Value, BestSolutionQualityParameterName, BestSolutionQualityParameterName);
|
---|
235 | AddValue(validationValues, bestQuality, CurrentBestValidationQualityParameterName, CurrentBestValidationQualityParameterName);
|
---|
236 | }
|
---|
237 |
|
---|
238 | private static void AddValue(DataTable table, double data, string name, string description) {
|
---|
239 | DataRow row;
|
---|
240 | table.Rows.TryGetValue(name, out row);
|
---|
241 | if (row == null) {
|
---|
242 | row = new DataRow(name, description);
|
---|
243 | row.Values.Add(data);
|
---|
244 | table.Rows.Add(row);
|
---|
245 | } else {
|
---|
246 | row.Values.Add(data);
|
---|
247 | }
|
---|
248 | }
|
---|
249 | }
|
---|
250 | }
|
---|