Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Problems.DataAnalysis.Regression/3.3/Symbolic/Analyzers/FixedValidationBestScaledSymbolicRegressionSolutionAnalyzer.cs @ 5304

Last change on this file since 5304 was 5246, checked in by gkronber, 14 years ago

Added calculation of length and height of best solution to FixedValidationBestScaledSymbolicRegressionSolutionAnalyzer. #1368

File size: 13.5 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Collections.Generic;
23using System.Linq;
24using HeuristicLab.Analysis;
25using HeuristicLab.Common;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
29using HeuristicLab.Operators;
30using HeuristicLab.Optimization;
31using HeuristicLab.Parameters;
32using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
33using HeuristicLab.Problems.DataAnalysis.Symbolic;
34
35namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic.Analyzers {
36  /// <summary>
37  /// An operator that analyzes the validation best scaled symbolic regression solution.
38  /// </summary>
39  [Item("FixedValidationBestScaledSymbolicRegressionSolutionAnalyzer", "An operator that analyzes the validation best scaled symbolic regression solution.")]
40  [StorableClass]
41  public sealed class FixedValidationBestScaledSymbolicRegressionSolutionAnalyzer : SymbolicRegressionValidationAnalyzer, ISymbolicRegressionAnalyzer {
42    private const string MaximizationParameterName = "Maximization";
43    private const string CalculateSolutionComplexityParameterName = "CalculateSolutionComplexity";
44    private const string BestSolutionParameterName = "Best solution (validation)";
45    private const string BestSolutionQualityParameterName = "Best solution quality (validation)";
46    private const string BestSolutionLengthParameterName = "Best solution length (validation)";
47    private const string BestSolutionHeightParameterName = "Best solution height (validiation)";
48    private const string CurrentBestValidationQualityParameterName = "Current best validation quality";
49    private const string BestSolutionQualityValuesParameterName = "Validation Quality";
50    private const string ResultsParameterName = "Results";
51    private const string VariableFrequenciesParameterName = "VariableFrequencies";
52    private const string BestKnownQualityParameterName = "BestKnownQuality";
53    private const string GenerationsParameterName = "Generations";
54
55    #region parameter properties
56    public ILookupParameter<BoolValue> MaximizationParameter {
57      get { return (ILookupParameter<BoolValue>)Parameters[MaximizationParameterName]; }
58    }
59    public IValueParameter<BoolValue> CalculateSolutionComplexityParameter {
60      get { return (IValueParameter<BoolValue>)Parameters[CalculateSolutionComplexityParameterName]; }
61    }
62    public ILookupParameter<SymbolicRegressionSolution> BestSolutionParameter {
63      get { return (ILookupParameter<SymbolicRegressionSolution>)Parameters[BestSolutionParameterName]; }
64    }
65    public ILookupParameter<IntValue> GenerationsParameter {
66      get { return (ILookupParameter<IntValue>)Parameters[GenerationsParameterName]; }
67    }
68    public ILookupParameter<DoubleValue> BestSolutionQualityParameter {
69      get { return (ILookupParameter<DoubleValue>)Parameters[BestSolutionQualityParameterName]; }
70    }
71    public ILookupParameter<IntValue> BestSolutionLengthParameter {
72      get { return (ILookupParameter<IntValue>)Parameters[BestSolutionLengthParameterName]; }
73    }
74    public ILookupParameter<IntValue> BestSolutionHeightParameter {
75      get { return (ILookupParameter<IntValue>)Parameters[BestSolutionHeightParameterName]; }
76    }
77    public ILookupParameter<ResultCollection> ResultsParameter {
78      get { return (ILookupParameter<ResultCollection>)Parameters[ResultsParameterName]; }
79    }
80    public ILookupParameter<DoubleValue> BestKnownQualityParameter {
81      get { return (ILookupParameter<DoubleValue>)Parameters[BestKnownQualityParameterName]; }
82    }
83    public ILookupParameter<DataTable> VariableFrequenciesParameter {
84      get { return (ILookupParameter<DataTable>)Parameters[VariableFrequenciesParameterName]; }
85    }
86
87    #endregion
88    #region properties
89    public BoolValue Maximization {
90      get { return MaximizationParameter.ActualValue; }
91    }
92    public BoolValue CalculateSolutionComplexity {
93      get { return CalculateSolutionComplexityParameter.Value; }
94      set { CalculateSolutionComplexityParameter.Value = value; }
95    }
96    public ResultCollection Results {
97      get { return ResultsParameter.ActualValue; }
98    }
99    public DataTable VariableFrequencies {
100      get { return VariableFrequenciesParameter.ActualValue; }
101    }
102    public IntValue Generations {
103      get { return GenerationsParameter.ActualValue; }
104    }
105    public DoubleValue BestSolutionQuality {
106      get { return BestSolutionQualityParameter.ActualValue; }
107    }
108    public IntValue BestSolutionLength {
109      get { return BestSolutionLengthParameter.ActualValue; }
110      set { BestSolutionLengthParameter.ActualValue = value; }
111    }
112    public IntValue BestSolutionHeight {
113      get { return BestSolutionHeightParameter.ActualValue; }
114      set { BestSolutionHeightParameter.ActualValue = value; }
115    }
116
117    #endregion
118
119    [StorableConstructor]
120    private FixedValidationBestScaledSymbolicRegressionSolutionAnalyzer(bool deserializing) : base(deserializing) { }
121    private FixedValidationBestScaledSymbolicRegressionSolutionAnalyzer(FixedValidationBestScaledSymbolicRegressionSolutionAnalyzer original, Cloner cloner) : base(original, cloner) { }
122    public FixedValidationBestScaledSymbolicRegressionSolutionAnalyzer()
123      : base() {
124      Parameters.Add(new LookupParameter<BoolValue>(MaximizationParameterName, "The direction of optimization."));
125      Parameters.Add(new ValueParameter<BoolValue>(CalculateSolutionComplexityParameterName, "Determines if the length and height of the validation best solution should be calculated.", new BoolValue(false)));
126      Parameters.Add(new LookupParameter<SymbolicRegressionSolution>(BestSolutionParameterName, "The best symbolic regression solution."));
127      Parameters.Add(new LookupParameter<IntValue>(GenerationsParameterName, "The number of generations calculated so far."));
128      Parameters.Add(new LookupParameter<DoubleValue>(BestSolutionQualityParameterName, "The quality of the best symbolic regression solution."));
129      Parameters.Add(new LookupParameter<IntValue>(BestSolutionLengthParameterName, "The length of the best symbolic regression solution."));
130      Parameters.Add(new LookupParameter<IntValue>(BestSolutionHeightParameterName, "The height of the best symbolic regression solution."));
131      Parameters.Add(new LookupParameter<ResultCollection>(ResultsParameterName, "The result collection where the best symbolic regression solution should be stored."));
132      Parameters.Add(new LookupParameter<DoubleValue>(BestKnownQualityParameterName, "The best known (validation) quality achieved on the data set."));
133      Parameters.Add(new LookupParameter<DataTable>(VariableFrequenciesParameterName, "The variable frequencies table to use for the calculation of variable impacts"));
134    }
135
136    public override IDeepCloneable Clone(Cloner cloner) {
137      return new FixedValidationBestScaledSymbolicRegressionSolutionAnalyzer(this, cloner);
138    }
139
140    [StorableHook(HookType.AfterDeserialization)]
141    private void AfterDeserialization() {
142      #region compatibility remove before releasing 3.4
143      if (!Parameters.ContainsKey("Evaluator")) {
144        Parameters.Add(new LookupParameter<ISymbolicRegressionEvaluator>("Evaluator", "The evaluator which should be used to evaluate the solution on the validation set."));
145      }
146      if (!Parameters.ContainsKey(MaximizationParameterName)) {
147        Parameters.Add(new LookupParameter<BoolValue>(MaximizationParameterName, "The direction of optimization."));
148      }
149      if (!Parameters.ContainsKey(CalculateSolutionComplexityParameterName)) {
150        Parameters.Add(new ValueParameter<BoolValue>(CalculateSolutionComplexityParameterName, "Determines if the length and height of the validation best solution should be calculated.", new BoolValue(false)));
151      }
152      if (!Parameters.ContainsKey(BestSolutionLengthParameterName)) {
153        Parameters.Add(new LookupParameter<IntValue>(BestSolutionLengthParameterName, "The length of the best symbolic regression solution."));
154      }
155      if (!Parameters.ContainsKey(BestSolutionHeightParameterName)) {
156        Parameters.Add(new LookupParameter<IntValue>(BestSolutionHeightParameterName, "The height of the best symbolic regression solution."));
157      }
158      #endregion
159    }
160
161    protected override void Analyze(SymbolicExpressionTree[] trees, double[] validationQuality) {
162      double bestQuality = Maximization.Value ? double.NegativeInfinity : double.PositiveInfinity;
163      SymbolicExpressionTree bestTree = null;
164
165      for (int i = 0; i < trees.Length; i++) {
166        double quality = validationQuality[i];
167        if ((Maximization.Value && quality > bestQuality) ||
168            (!Maximization.Value && quality < bestQuality)) {
169          bestQuality = quality;
170          bestTree = trees[i];
171        }
172      }
173
174      // if the best validation tree is better than the current best solution => update
175      bool newBest =
176        BestSolutionQuality == null ||
177        (Maximization.Value && bestQuality > BestSolutionQuality.Value) ||
178        (!Maximization.Value && bestQuality < BestSolutionQuality.Value);
179      if (newBest) {
180        double lowerEstimationLimit = LowerEstimationLimit.Value;
181        double upperEstimationLimit = UpperEstimationLimit.Value;
182        string targetVariable = ProblemData.TargetVariable.Value;
183
184        // calculate scaling parameters and only for the best tree using the full training set
185        double alpha, beta;
186        SymbolicRegressionScaledMeanSquaredErrorEvaluator.Calculate(SymbolicExpressionTreeInterpreter, bestTree,
187          lowerEstimationLimit, upperEstimationLimit,
188          ProblemData.Dataset, targetVariable,
189          ProblemData.TrainingIndizes, out beta, out alpha);
190
191        // scale tree for solution
192        var scaledTree = SymbolicRegressionSolutionLinearScaler.Scale(bestTree, alpha, beta);
193        var model = new SymbolicRegressionModel((ISymbolicExpressionTreeInterpreter)SymbolicExpressionTreeInterpreter.Clone(),
194          scaledTree);
195        var solution = new SymbolicRegressionSolution((DataAnalysisProblemData)ProblemData.Clone(), model, lowerEstimationLimit, upperEstimationLimit);
196        solution.Name = BestSolutionParameterName;
197        solution.Description = "Best solution on validation partition found over the whole run.";
198
199        BestSolutionParameter.ActualValue = solution;
200        BestSolutionQualityParameter.ActualValue = new DoubleValue(bestQuality);
201
202        if (CalculateSolutionComplexity.Value) {
203          BestSolutionLength = new IntValue(solution.Model.SymbolicExpressionTree.Size);
204          BestSolutionHeight = new IntValue(solution.Model.SymbolicExpressionTree.Height);
205          if (!Results.ContainsKey(BestSolutionLengthParameterName)) {
206            Results.Add(new Result(BestSolutionLengthParameterName, "Length of the best solution on the validation set", new IntValue()));
207            Results.Add(new Result(BestSolutionHeightParameterName, "Height of the best solution on the validation set", new IntValue()));
208          }
209          Results[BestSolutionLengthParameterName].Value = BestSolutionLength;
210          Results[BestSolutionHeightParameterName].Value = BestSolutionHeight;
211        }
212
213        BestSymbolicRegressionSolutionAnalyzer.UpdateBestSolutionResults(solution, ProblemData, Results, Generations, VariableFrequencies);
214      }
215
216      if (!Results.ContainsKey(BestSolutionQualityValuesParameterName)) {
217        Results.Add(new Result(BestSolutionQualityValuesParameterName, new DataTable(BestSolutionQualityValuesParameterName, BestSolutionQualityValuesParameterName)));
218        Results.Add(new Result(BestSolutionQualityParameterName, new DoubleValue()));
219        Results.Add(new Result(CurrentBestValidationQualityParameterName, new DoubleValue()));
220      }
221      Results[BestSolutionQualityParameterName].Value = new DoubleValue(BestSolutionQualityParameter.ActualValue.Value);
222      Results[CurrentBestValidationQualityParameterName].Value = new DoubleValue(bestQuality);
223
224      DataTable validationValues = (DataTable)Results[BestSolutionQualityValuesParameterName].Value;
225      AddValue(validationValues, BestSolutionQualityParameter.ActualValue.Value, BestSolutionQualityParameterName, BestSolutionQualityParameterName);
226      AddValue(validationValues, bestQuality, CurrentBestValidationQualityParameterName, CurrentBestValidationQualityParameterName);
227    }
228
229    private static void AddValue(DataTable table, double data, string name, string description) {
230      DataRow row;
231      table.Rows.TryGetValue(name, out row);
232      if (row == null) {
233        row = new DataRow(name, description);
234        row.Values.Add(data);
235        table.Rows.Add(row);
236      } else {
237        row.Values.Add(data);
238      }
239    }
240  }
241}
Note: See TracBrowser for help on using the repository browser.