1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Analysis;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
28 | using HeuristicLab.Operators;
|
---|
29 | using HeuristicLab.Optimization;
|
---|
30 | using HeuristicLab.Parameters;
|
---|
31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
32 | using HeuristicLab.Problems.DataAnalysis.Evaluators;
|
---|
33 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
34 |
|
---|
35 | namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic.Analyzers {
|
---|
36 | /// <summary>
|
---|
37 | /// An operator that analyzes the validation best scaled symbolic regression solution.
|
---|
38 | /// </summary>
|
---|
39 | [Item("FixedValidationBestScaledSymbolicRegressionSolutionAnalyzer", "An operator that analyzes the validation best scaled symbolic regression solution.")]
|
---|
40 | [StorableClass]
|
---|
41 | public sealed class FixedValidationBestScaledSymbolicRegressionSolutionAnalyzer : SingleSuccessorOperator, ISymbolicRegressionAnalyzer {
|
---|
42 | private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
|
---|
43 | private const string SymbolicExpressionTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter";
|
---|
44 | private const string ProblemDataParameterName = "ProblemData";
|
---|
45 | private const string ValidationSamplesStartParameterName = "SamplesStart";
|
---|
46 | private const string ValidationSamplesEndParameterName = "SamplesEnd";
|
---|
47 | private const string QualityParameterName = "Quality";
|
---|
48 | private const string ScaledQualityParameterName = "ScaledQuality";
|
---|
49 | private const string UpperEstimationLimitParameterName = "UpperEstimationLimit";
|
---|
50 | private const string LowerEstimationLimitParameterName = "LowerEstimationLimit";
|
---|
51 | private const string AlphaParameterName = "Alpha";
|
---|
52 | private const string BetaParameterName = "Beta";
|
---|
53 | private const string BestSolutionParameterName = "Best solution (validation)";
|
---|
54 | private const string BestSolutionQualityParameterName = "Best solution quality (validation)";
|
---|
55 | private const string CurrentBestValidationQualityParameterName = "Current best validation quality";
|
---|
56 | private const string BestSolutionQualityValuesParameterName = "Validation Quality";
|
---|
57 | private const string ResultsParameterName = "Results";
|
---|
58 | private const string VariableFrequenciesParameterName = "VariableFrequencies";
|
---|
59 | private const string BestKnownQualityParameterName = "BestKnownQuality";
|
---|
60 | private const string GenerationsParameterName = "Generations";
|
---|
61 |
|
---|
62 | private const string TrainingMeanSquaredErrorQualityParameterName = "Mean squared error (training)";
|
---|
63 | private const string MinTrainingMeanSquaredErrorQualityParameterName = "Min mean squared error (training)";
|
---|
64 | private const string MaxTrainingMeanSquaredErrorQualityParameterName = "Max mean squared error (training)";
|
---|
65 | private const string AverageTrainingMeanSquaredErrorQualityParameterName = "Average mean squared error (training)";
|
---|
66 | private const string BestTrainingMeanSquaredErrorQualityParameterName = "Best mean squared error (training)";
|
---|
67 |
|
---|
68 | private const string TrainingAverageRelativeErrorQualityParameterName = "Average relative error (training)";
|
---|
69 | private const string MinTrainingAverageRelativeErrorQualityParameterName = "Min average relative error (training)";
|
---|
70 | private const string MaxTrainingAverageRelativeErrorQualityParameterName = "Max average relative error (training)";
|
---|
71 | private const string AverageTrainingAverageRelativeErrorQualityParameterName = "Average average relative error (training)";
|
---|
72 | private const string BestTrainingAverageRelativeErrorQualityParameterName = "Best average relative error (training)";
|
---|
73 |
|
---|
74 | private const string TrainingRSquaredQualityParameterName = "R² (training)";
|
---|
75 | private const string MinTrainingRSquaredQualityParameterName = "Min R² (training)";
|
---|
76 | private const string MaxTrainingRSquaredQualityParameterName = "Max R² (training)";
|
---|
77 | private const string AverageTrainingRSquaredQualityParameterName = "Average R² (training)";
|
---|
78 | private const string BestTrainingRSquaredQualityParameterName = "Best R² (training)";
|
---|
79 |
|
---|
80 | private const string TestMeanSquaredErrorQualityParameterName = "Mean squared error (test)";
|
---|
81 | private const string MinTestMeanSquaredErrorQualityParameterName = "Min mean squared error (test)";
|
---|
82 | private const string MaxTestMeanSquaredErrorQualityParameterName = "Max mean squared error (test)";
|
---|
83 | private const string AverageTestMeanSquaredErrorQualityParameterName = "Average mean squared error (test)";
|
---|
84 | private const string BestTestMeanSquaredErrorQualityParameterName = "Best mean squared error (test)";
|
---|
85 |
|
---|
86 | private const string TestAverageRelativeErrorQualityParameterName = "Average relative error (test)";
|
---|
87 | private const string MinTestAverageRelativeErrorQualityParameterName = "Min average relative error (test)";
|
---|
88 | private const string MaxTestAverageRelativeErrorQualityParameterName = "Max average relative error (test)";
|
---|
89 | private const string AverageTestAverageRelativeErrorQualityParameterName = "Average average relative error (test)";
|
---|
90 | private const string BestTestAverageRelativeErrorQualityParameterName = "Best average relative error (test)";
|
---|
91 |
|
---|
92 | private const string TestRSquaredQualityParameterName = "R² (test)";
|
---|
93 | private const string MinTestRSquaredQualityParameterName = "Min R² (test)";
|
---|
94 | private const string MaxTestRSquaredQualityParameterName = "Max R² (test)";
|
---|
95 | private const string AverageTestRSquaredQualityParameterName = "Average R² (test)";
|
---|
96 | private const string BestTestRSquaredQualityParameterName = "Best R² (test)";
|
---|
97 |
|
---|
98 | private const string RSquaredValuesParameterName = "R²";
|
---|
99 | private const string MeanSquaredErrorValuesParameterName = "Mean squared error";
|
---|
100 | private const string RelativeErrorValuesParameterName = "Average relative error";
|
---|
101 |
|
---|
102 | #region parameter properties
|
---|
103 | public ScopeTreeLookupParameter<SymbolicExpressionTree> SymbolicExpressionTreeParameter {
|
---|
104 | get { return (ScopeTreeLookupParameter<SymbolicExpressionTree>)Parameters[SymbolicExpressionTreeParameterName]; }
|
---|
105 | }
|
---|
106 | public ScopeTreeLookupParameter<DoubleValue> QualityParameter {
|
---|
107 | get { return (ScopeTreeLookupParameter<DoubleValue>)Parameters[QualityParameterName]; }
|
---|
108 | }
|
---|
109 | public ScopeTreeLookupParameter<DoubleValue> AlphaParameter {
|
---|
110 | get { return (ScopeTreeLookupParameter<DoubleValue>)Parameters[AlphaParameterName]; }
|
---|
111 | }
|
---|
112 | public ScopeTreeLookupParameter<DoubleValue> BetaParameter {
|
---|
113 | get { return (ScopeTreeLookupParameter<DoubleValue>)Parameters[BetaParameterName]; }
|
---|
114 | }
|
---|
115 | public IValueLookupParameter<ISymbolicExpressionTreeInterpreter> SymbolicExpressionTreeInterpreterParameter {
|
---|
116 | get { return (IValueLookupParameter<ISymbolicExpressionTreeInterpreter>)Parameters[SymbolicExpressionTreeInterpreterParameterName]; }
|
---|
117 | }
|
---|
118 | public IValueLookupParameter<DataAnalysisProblemData> ProblemDataParameter {
|
---|
119 | get { return (IValueLookupParameter<DataAnalysisProblemData>)Parameters[ProblemDataParameterName]; }
|
---|
120 | }
|
---|
121 | public IValueLookupParameter<IntValue> ValidationSamplesStartParameter {
|
---|
122 | get { return (IValueLookupParameter<IntValue>)Parameters[ValidationSamplesStartParameterName]; }
|
---|
123 | }
|
---|
124 | public IValueLookupParameter<IntValue> ValidationSamplesEndParameter {
|
---|
125 | get { return (IValueLookupParameter<IntValue>)Parameters[ValidationSamplesEndParameterName]; }
|
---|
126 | }
|
---|
127 | public IValueLookupParameter<DoubleValue> UpperEstimationLimitParameter {
|
---|
128 | get { return (IValueLookupParameter<DoubleValue>)Parameters[UpperEstimationLimitParameterName]; }
|
---|
129 | }
|
---|
130 | public IValueLookupParameter<DoubleValue> LowerEstimationLimitParameter {
|
---|
131 | get { return (IValueLookupParameter<DoubleValue>)Parameters[LowerEstimationLimitParameterName]; }
|
---|
132 | }
|
---|
133 | public ILookupParameter<SymbolicRegressionSolution> BestSolutionParameter {
|
---|
134 | get { return (ILookupParameter<SymbolicRegressionSolution>)Parameters[BestSolutionParameterName]; }
|
---|
135 | }
|
---|
136 | public ILookupParameter<IntValue> GenerationsParameter {
|
---|
137 | get { return (ILookupParameter<IntValue>)Parameters[GenerationsParameterName]; }
|
---|
138 | }
|
---|
139 | public ILookupParameter<DoubleValue> BestSolutionQualityParameter {
|
---|
140 | get { return (ILookupParameter<DoubleValue>)Parameters[BestSolutionQualityParameterName]; }
|
---|
141 | }
|
---|
142 | public ILookupParameter<ResultCollection> ResultsParameter {
|
---|
143 | get { return (ILookupParameter<ResultCollection>)Parameters[ResultsParameterName]; }
|
---|
144 | }
|
---|
145 | public ILookupParameter<DoubleValue> BestKnownQualityParameter {
|
---|
146 | get { return (ILookupParameter<DoubleValue>)Parameters[BestKnownQualityParameterName]; }
|
---|
147 | }
|
---|
148 | public ILookupParameter<DataTable> VariableFrequenciesParameter {
|
---|
149 | get { return (ILookupParameter<DataTable>)Parameters[VariableFrequenciesParameterName]; }
|
---|
150 | }
|
---|
151 |
|
---|
152 | #endregion
|
---|
153 | #region properties
|
---|
154 | public ItemArray<SymbolicExpressionTree> SymbolicExpressionTree {
|
---|
155 | get { return SymbolicExpressionTreeParameter.ActualValue; }
|
---|
156 | }
|
---|
157 | public ItemArray<DoubleValue> Quality {
|
---|
158 | get { return QualityParameter.ActualValue; }
|
---|
159 | }
|
---|
160 | public ItemArray<DoubleValue> Alpha {
|
---|
161 | get { return AlphaParameter.ActualValue; }
|
---|
162 | }
|
---|
163 | public ItemArray<DoubleValue> Beta {
|
---|
164 | get { return BetaParameter.ActualValue; }
|
---|
165 | }
|
---|
166 | public ISymbolicExpressionTreeInterpreter SymbolicExpressionTreeInterpreter {
|
---|
167 | get { return SymbolicExpressionTreeInterpreterParameter.ActualValue; }
|
---|
168 | }
|
---|
169 | public DataAnalysisProblemData ProblemData {
|
---|
170 | get { return ProblemDataParameter.ActualValue; }
|
---|
171 | }
|
---|
172 | public IntValue ValidiationSamplesStart {
|
---|
173 | get { return ValidationSamplesStartParameter.ActualValue; }
|
---|
174 | }
|
---|
175 | public IntValue ValidationSamplesEnd {
|
---|
176 | get { return ValidationSamplesEndParameter.ActualValue; }
|
---|
177 | }
|
---|
178 | public DoubleValue UpperEstimationLimit {
|
---|
179 | get { return UpperEstimationLimitParameter.ActualValue; }
|
---|
180 | }
|
---|
181 | public DoubleValue LowerEstimationLimit {
|
---|
182 | get { return LowerEstimationLimitParameter.ActualValue; }
|
---|
183 | }
|
---|
184 | public ResultCollection Results {
|
---|
185 | get { return ResultsParameter.ActualValue; }
|
---|
186 | }
|
---|
187 | public DataTable VariableFrequencies {
|
---|
188 | get { return VariableFrequenciesParameter.ActualValue; }
|
---|
189 | }
|
---|
190 | public IntValue Generations {
|
---|
191 | get { return GenerationsParameter.ActualValue; }
|
---|
192 | }
|
---|
193 |
|
---|
194 | #endregion
|
---|
195 |
|
---|
196 | public FixedValidationBestScaledSymbolicRegressionSolutionAnalyzer()
|
---|
197 | : base() {
|
---|
198 | Parameters.Add(new ScopeTreeLookupParameter<SymbolicExpressionTree>(SymbolicExpressionTreeParameterName, "The symbolic expression trees to analyze."));
|
---|
199 | Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>(QualityParameterName, "The quality of the symbolic expression trees to analyze."));
|
---|
200 | Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>(AlphaParameterName, "The alpha parameter for linear scaling."));
|
---|
201 | Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>(BetaParameterName, "The beta parameter for linear scaling."));
|
---|
202 | Parameters.Add(new ValueLookupParameter<ISymbolicExpressionTreeInterpreter>(SymbolicExpressionTreeInterpreterParameterName, "The interpreter that should be used for the analysis of symbolic expression trees."));
|
---|
203 | Parameters.Add(new ValueLookupParameter<DataAnalysisProblemData>(ProblemDataParameterName, "The problem data for which the symbolic expression tree is a solution."));
|
---|
204 | Parameters.Add(new ValueLookupParameter<IntValue>(ValidationSamplesStartParameterName, "The first index of the validation partition of the data set."));
|
---|
205 | Parameters.Add(new ValueLookupParameter<IntValue>(ValidationSamplesEndParameterName, "The last index of the validation partition of the data set."));
|
---|
206 | Parameters.Add(new ValueLookupParameter<DoubleValue>(UpperEstimationLimitParameterName, "The upper estimation limit that was set for the evaluation of the symbolic expression trees."));
|
---|
207 | Parameters.Add(new ValueLookupParameter<DoubleValue>(LowerEstimationLimitParameterName, "The lower estimation limit that was set for the evaluation of the symbolic expression trees."));
|
---|
208 | Parameters.Add(new LookupParameter<SymbolicRegressionSolution>(BestSolutionParameterName, "The best symbolic regression solution."));
|
---|
209 | Parameters.Add(new LookupParameter<IntValue>(GenerationsParameterName, "The number of generations calculated so far."));
|
---|
210 | Parameters.Add(new LookupParameter<DoubleValue>(BestSolutionQualityParameterName, "The quality of the best symbolic regression solution."));
|
---|
211 | Parameters.Add(new LookupParameter<ResultCollection>(ResultsParameterName, "The result collection where the best symbolic regression solution should be stored."));
|
---|
212 | Parameters.Add(new LookupParameter<DoubleValue>(BestKnownQualityParameterName, "The best known (validation) quality achieved on the data set."));
|
---|
213 | Parameters.Add(new LookupParameter<DataTable>(VariableFrequenciesParameterName, "The variable frequencies table to use for the calculation of variable impacts"));
|
---|
214 | }
|
---|
215 |
|
---|
216 | [StorableConstructor]
|
---|
217 | private FixedValidationBestScaledSymbolicRegressionSolutionAnalyzer(bool deserializing) : base() { }
|
---|
218 |
|
---|
219 | public override IOperation Apply() {
|
---|
220 | var alphas = Alpha;
|
---|
221 | var betas = Beta;
|
---|
222 | var trees = SymbolicExpressionTree;
|
---|
223 |
|
---|
224 | IEnumerable<SymbolicExpressionTree> scaledTrees;
|
---|
225 | if (alphas.Length == trees.Length) {
|
---|
226 | scaledTrees = from i in Enumerable.Range(0, trees.Length)
|
---|
227 | select SymbolicRegressionSolutionLinearScaler.Scale(trees[i], alphas[i].Value, betas[i].Value);
|
---|
228 | } else {
|
---|
229 | scaledTrees = trees;
|
---|
230 | }
|
---|
231 |
|
---|
232 | string targetVariable = ProblemData.TargetVariable.Value;
|
---|
233 | int validationStart = ValidiationSamplesStart.Value;
|
---|
234 | int validationEnd = ValidationSamplesEnd.Value;
|
---|
235 | double upperEstimationLimit = UpperEstimationLimit != null ? UpperEstimationLimit.Value : double.PositiveInfinity;
|
---|
236 | double lowerEstimationLimit = LowerEstimationLimit != null ? LowerEstimationLimit.Value : double.NegativeInfinity;
|
---|
237 |
|
---|
238 | double bestValidationMse = double.MaxValue;
|
---|
239 | SymbolicExpressionTree bestTree = null;
|
---|
240 |
|
---|
241 | OnlineMeanSquaredErrorEvaluator mseEvaluator = new OnlineMeanSquaredErrorEvaluator();
|
---|
242 | foreach (var scaledTree in scaledTrees) {
|
---|
243 | double validationMse = SymbolicRegressionMeanSquaredErrorEvaluator.Calculate(SymbolicExpressionTreeInterpreter, scaledTree,
|
---|
244 | lowerEstimationLimit, upperEstimationLimit,
|
---|
245 | ProblemData.Dataset, targetVariable,
|
---|
246 | Enumerable.Range(validationStart, validationEnd - validationStart));
|
---|
247 |
|
---|
248 | if (validationMse < bestValidationMse) {
|
---|
249 | bestValidationMse = validationMse;
|
---|
250 | bestTree = scaledTree;
|
---|
251 | }
|
---|
252 | }
|
---|
253 |
|
---|
254 | if (BestSolutionQualityParameter.ActualValue == null || BestSolutionQualityParameter.ActualValue.Value > bestValidationMse) {
|
---|
255 | var model = new SymbolicRegressionModel((ISymbolicExpressionTreeInterpreter)SymbolicExpressionTreeInterpreter.Clone(),
|
---|
256 | bestTree);
|
---|
257 | var solution = new SymbolicRegressionSolution(ProblemData, model, lowerEstimationLimit, upperEstimationLimit);
|
---|
258 | solution.Name = BestSolutionParameterName;
|
---|
259 | solution.Description = "Best solution on validation partition found over the whole run.";
|
---|
260 |
|
---|
261 | BestSolutionParameter.ActualValue = solution;
|
---|
262 | BestSolutionQualityParameter.ActualValue = new DoubleValue(bestValidationMse);
|
---|
263 |
|
---|
264 | BestSymbolicRegressionSolutionAnalyzer.UpdateBestSolutionResults(solution, ProblemData, Results, Generations, VariableFrequencies);
|
---|
265 | }
|
---|
266 |
|
---|
267 | if (!Results.ContainsKey(BestSolutionQualityValuesParameterName)) {
|
---|
268 | Results.Add(new Result(BestSolutionQualityValuesParameterName, new DataTable(BestSolutionQualityValuesParameterName, BestSolutionQualityValuesParameterName)));
|
---|
269 | Results.Add(new Result(BestSolutionQualityParameterName, new DoubleValue()));
|
---|
270 | Results.Add(new Result(CurrentBestValidationQualityParameterName, new DoubleValue()));
|
---|
271 | }
|
---|
272 | Results[BestSolutionQualityParameterName].Value = new DoubleValue(BestSolutionQualityParameter.ActualValue.Value);
|
---|
273 | Results[CurrentBestValidationQualityParameterName].Value = new DoubleValue(bestValidationMse);
|
---|
274 |
|
---|
275 | DataTable validationValues = (DataTable)Results[BestSolutionQualityValuesParameterName].Value;
|
---|
276 | AddValue(validationValues, BestSolutionQualityParameter.ActualValue.Value, BestSolutionQualityParameterName, BestSolutionQualityParameterName);
|
---|
277 | AddValue(validationValues, bestValidationMse, CurrentBestValidationQualityParameterName, CurrentBestValidationQualityParameterName);
|
---|
278 | return base.Apply();
|
---|
279 | }
|
---|
280 |
|
---|
281 | [StorableHook(HookType.AfterDeserialization)]
|
---|
282 | private void Initialize() {
|
---|
283 | if (!Parameters.ContainsKey(AlphaParameterName)) {
|
---|
284 | Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>(AlphaParameterName, "The alpha parameter for linear scaling."));
|
---|
285 | }
|
---|
286 | if (!Parameters.ContainsKey(BetaParameterName)) {
|
---|
287 | Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>(BetaParameterName, "The beta parameter for linear scaling."));
|
---|
288 | }
|
---|
289 | if (!Parameters.ContainsKey(VariableFrequenciesParameterName)) {
|
---|
290 | Parameters.Add(new LookupParameter<DataTable>(VariableFrequenciesParameterName, "The variable frequencies table to use for the calculation of variable impacts"));
|
---|
291 | }
|
---|
292 | if (!Parameters.ContainsKey(GenerationsParameterName)) {
|
---|
293 | Parameters.Add(new LookupParameter<IntValue>(GenerationsParameterName, "The number of generations calculated so far."));
|
---|
294 | }
|
---|
295 | }
|
---|
296 |
|
---|
297 | private static void AddValue(DataTable table, double data, string name, string description) {
|
---|
298 | DataRow row;
|
---|
299 | table.Rows.TryGetValue(name, out row);
|
---|
300 | if (row == null) {
|
---|
301 | row = new DataRow(name, description);
|
---|
302 | row.Values.Add(data);
|
---|
303 | table.Rows.Add(row);
|
---|
304 | } else {
|
---|
305 | row.Values.Add(data);
|
---|
306 | }
|
---|
307 | }
|
---|
308 | }
|
---|
309 | }
|
---|