[3996] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[5445] | 3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[3996] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[4068] | 22 | using HeuristicLab.Analysis;
|
---|
[4722] | 23 | using HeuristicLab.Common;
|
---|
[3996] | 24 | using HeuristicLab.Core;
|
---|
| 25 | using HeuristicLab.Data;
|
---|
[4068] | 26 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
[3996] | 27 | using HeuristicLab.Optimization;
|
---|
| 28 | using HeuristicLab.Parameters;
|
---|
| 29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
[5863] | 30 | using HeuristicLab.PluginInfrastructure;
|
---|
[3996] | 31 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
| 32 |
|
---|
| 33 | namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic.Analyzers {
|
---|
| 34 | /// <summary>
|
---|
| 35 | /// An operator that analyzes the validation best scaled symbolic regression solution.
|
---|
| 36 | /// </summary>
|
---|
| 37 | [Item("FixedValidationBestScaledSymbolicRegressionSolutionAnalyzer", "An operator that analyzes the validation best scaled symbolic regression solution.")]
|
---|
| 38 | [StorableClass]
|
---|
[5863] | 39 | [NonDiscoverableType]
|
---|
[5198] | 40 | public sealed class FixedValidationBestScaledSymbolicRegressionSolutionAnalyzer : SymbolicRegressionValidationAnalyzer, ISymbolicRegressionAnalyzer {
|
---|
[5331] | 41 | private const string ApplyLinearScalingParameterName = "ApplyLinearScaling";
|
---|
[4191] | 42 | private const string MaximizationParameterName = "Maximization";
|
---|
[5246] | 43 | private const string CalculateSolutionComplexityParameterName = "CalculateSolutionComplexity";
|
---|
[3996] | 44 | private const string BestSolutionParameterName = "Best solution (validation)";
|
---|
| 45 | private const string BestSolutionQualityParameterName = "Best solution quality (validation)";
|
---|
[5246] | 46 | private const string BestSolutionLengthParameterName = "Best solution length (validation)";
|
---|
| 47 | private const string BestSolutionHeightParameterName = "Best solution height (validiation)";
|
---|
[3996] | 48 | private const string CurrentBestValidationQualityParameterName = "Current best validation quality";
|
---|
| 49 | private const string BestSolutionQualityValuesParameterName = "Validation Quality";
|
---|
| 50 | private const string ResultsParameterName = "Results";
|
---|
| 51 | private const string VariableFrequenciesParameterName = "VariableFrequencies";
|
---|
| 52 | private const string BestKnownQualityParameterName = "BestKnownQuality";
|
---|
| 53 | private const string GenerationsParameterName = "Generations";
|
---|
| 54 |
|
---|
| 55 | #region parameter properties
|
---|
[4191] | 56 | public ILookupParameter<BoolValue> MaximizationParameter {
|
---|
| 57 | get { return (ILookupParameter<BoolValue>)Parameters[MaximizationParameterName]; }
|
---|
| 58 | }
|
---|
[5246] | 59 | public IValueParameter<BoolValue> CalculateSolutionComplexityParameter {
|
---|
| 60 | get { return (IValueParameter<BoolValue>)Parameters[CalculateSolutionComplexityParameterName]; }
|
---|
| 61 | }
|
---|
[3996] | 62 | public ILookupParameter<SymbolicRegressionSolution> BestSolutionParameter {
|
---|
| 63 | get { return (ILookupParameter<SymbolicRegressionSolution>)Parameters[BestSolutionParameterName]; }
|
---|
| 64 | }
|
---|
| 65 | public ILookupParameter<IntValue> GenerationsParameter {
|
---|
| 66 | get { return (ILookupParameter<IntValue>)Parameters[GenerationsParameterName]; }
|
---|
| 67 | }
|
---|
| 68 | public ILookupParameter<DoubleValue> BestSolutionQualityParameter {
|
---|
| 69 | get { return (ILookupParameter<DoubleValue>)Parameters[BestSolutionQualityParameterName]; }
|
---|
| 70 | }
|
---|
[5246] | 71 | public ILookupParameter<IntValue> BestSolutionLengthParameter {
|
---|
| 72 | get { return (ILookupParameter<IntValue>)Parameters[BestSolutionLengthParameterName]; }
|
---|
| 73 | }
|
---|
| 74 | public ILookupParameter<IntValue> BestSolutionHeightParameter {
|
---|
| 75 | get { return (ILookupParameter<IntValue>)Parameters[BestSolutionHeightParameterName]; }
|
---|
| 76 | }
|
---|
[3996] | 77 | public ILookupParameter<ResultCollection> ResultsParameter {
|
---|
| 78 | get { return (ILookupParameter<ResultCollection>)Parameters[ResultsParameterName]; }
|
---|
| 79 | }
|
---|
| 80 | public ILookupParameter<DoubleValue> BestKnownQualityParameter {
|
---|
| 81 | get { return (ILookupParameter<DoubleValue>)Parameters[BestKnownQualityParameterName]; }
|
---|
| 82 | }
|
---|
| 83 | public ILookupParameter<DataTable> VariableFrequenciesParameter {
|
---|
| 84 | get { return (ILookupParameter<DataTable>)Parameters[VariableFrequenciesParameterName]; }
|
---|
| 85 | }
|
---|
[5331] | 86 | public IValueLookupParameter<BoolValue> ApplyLinearScalingParameter {
|
---|
| 87 | get { return (IValueLookupParameter<BoolValue>)Parameters[ApplyLinearScalingParameterName]; }
|
---|
| 88 | }
|
---|
[3996] | 89 | #endregion
|
---|
| 90 | #region properties
|
---|
[4191] | 91 | public BoolValue Maximization {
|
---|
| 92 | get { return MaximizationParameter.ActualValue; }
|
---|
| 93 | }
|
---|
[5246] | 94 | public BoolValue CalculateSolutionComplexity {
|
---|
| 95 | get { return CalculateSolutionComplexityParameter.Value; }
|
---|
| 96 | set { CalculateSolutionComplexityParameter.Value = value; }
|
---|
| 97 | }
|
---|
[3996] | 98 | public ResultCollection Results {
|
---|
| 99 | get { return ResultsParameter.ActualValue; }
|
---|
| 100 | }
|
---|
| 101 | public DataTable VariableFrequencies {
|
---|
| 102 | get { return VariableFrequenciesParameter.ActualValue; }
|
---|
| 103 | }
|
---|
| 104 | public IntValue Generations {
|
---|
| 105 | get { return GenerationsParameter.ActualValue; }
|
---|
| 106 | }
|
---|
[4191] | 107 | public DoubleValue BestSolutionQuality {
|
---|
| 108 | get { return BestSolutionQualityParameter.ActualValue; }
|
---|
| 109 | }
|
---|
[5246] | 110 | public IntValue BestSolutionLength {
|
---|
| 111 | get { return BestSolutionLengthParameter.ActualValue; }
|
---|
| 112 | set { BestSolutionLengthParameter.ActualValue = value; }
|
---|
| 113 | }
|
---|
| 114 | public IntValue BestSolutionHeight {
|
---|
| 115 | get { return BestSolutionHeightParameter.ActualValue; }
|
---|
| 116 | set { BestSolutionHeightParameter.ActualValue = value; }
|
---|
| 117 | }
|
---|
[5331] | 118 | public BoolValue ApplyLinearScaling {
|
---|
| 119 | get { return ApplyLinearScalingParameter.ActualValue; }
|
---|
| 120 | set { ApplyLinearScalingParameter.ActualValue = value; }
|
---|
| 121 | }
|
---|
[3996] | 122 | #endregion
|
---|
| 123 |
|
---|
[4722] | 124 | [StorableConstructor]
|
---|
| 125 | private FixedValidationBestScaledSymbolicRegressionSolutionAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
| 126 | private FixedValidationBestScaledSymbolicRegressionSolutionAnalyzer(FixedValidationBestScaledSymbolicRegressionSolutionAnalyzer original, Cloner cloner) : base(original, cloner) { }
|
---|
[3996] | 127 | public FixedValidationBestScaledSymbolicRegressionSolutionAnalyzer()
|
---|
| 128 | : base() {
|
---|
[5331] | 129 | Parameters.Add(new ValueLookupParameter<BoolValue>(ApplyLinearScalingParameterName, "The switch determines if the best solution should be linearly scaled on the whole training set.", new BoolValue(true)));
|
---|
[4191] | 130 | Parameters.Add(new LookupParameter<BoolValue>(MaximizationParameterName, "The direction of optimization."));
|
---|
[5331] | 131 | Parameters.Add(new ValueParameter<BoolValue>(CalculateSolutionComplexityParameterName, "Determines if the length and height of the validation best solution should be calculated.", new BoolValue(true)));
|
---|
[3996] | 132 | Parameters.Add(new LookupParameter<SymbolicRegressionSolution>(BestSolutionParameterName, "The best symbolic regression solution."));
|
---|
| 133 | Parameters.Add(new LookupParameter<IntValue>(GenerationsParameterName, "The number of generations calculated so far."));
|
---|
| 134 | Parameters.Add(new LookupParameter<DoubleValue>(BestSolutionQualityParameterName, "The quality of the best symbolic regression solution."));
|
---|
[5246] | 135 | Parameters.Add(new LookupParameter<IntValue>(BestSolutionLengthParameterName, "The length of the best symbolic regression solution."));
|
---|
| 136 | Parameters.Add(new LookupParameter<IntValue>(BestSolutionHeightParameterName, "The height of the best symbolic regression solution."));
|
---|
[3996] | 137 | Parameters.Add(new LookupParameter<ResultCollection>(ResultsParameterName, "The result collection where the best symbolic regression solution should be stored."));
|
---|
| 138 | Parameters.Add(new LookupParameter<DoubleValue>(BestKnownQualityParameterName, "The best known (validation) quality achieved on the data set."));
|
---|
| 139 | Parameters.Add(new LookupParameter<DataTable>(VariableFrequenciesParameterName, "The variable frequencies table to use for the calculation of variable impacts"));
|
---|
| 140 | }
|
---|
| 141 |
|
---|
[4722] | 142 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 143 | return new FixedValidationBestScaledSymbolicRegressionSolutionAnalyzer(this, cloner);
|
---|
| 144 | }
|
---|
[3996] | 145 |
|
---|
[4191] | 146 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 147 | private void AfterDeserialization() {
|
---|
[4889] | 148 | #region compatibility remove before releasing 3.4
|
---|
[5198] | 149 | if (!Parameters.ContainsKey("Evaluator")) {
|
---|
| 150 | Parameters.Add(new LookupParameter<ISymbolicRegressionEvaluator>("Evaluator", "The evaluator which should be used to evaluate the solution on the validation set."));
|
---|
[4191] | 151 | }
|
---|
| 152 | if (!Parameters.ContainsKey(MaximizationParameterName)) {
|
---|
| 153 | Parameters.Add(new LookupParameter<BoolValue>(MaximizationParameterName, "The direction of optimization."));
|
---|
| 154 | }
|
---|
[5246] | 155 | if (!Parameters.ContainsKey(CalculateSolutionComplexityParameterName)) {
|
---|
| 156 | Parameters.Add(new ValueParameter<BoolValue>(CalculateSolutionComplexityParameterName, "Determines if the length and height of the validation best solution should be calculated.", new BoolValue(false)));
|
---|
| 157 | }
|
---|
| 158 | if (!Parameters.ContainsKey(BestSolutionLengthParameterName)) {
|
---|
| 159 | Parameters.Add(new LookupParameter<IntValue>(BestSolutionLengthParameterName, "The length of the best symbolic regression solution."));
|
---|
| 160 | }
|
---|
| 161 | if (!Parameters.ContainsKey(BestSolutionHeightParameterName)) {
|
---|
| 162 | Parameters.Add(new LookupParameter<IntValue>(BestSolutionHeightParameterName, "The height of the best symbolic regression solution."));
|
---|
| 163 | }
|
---|
[5331] | 164 | if (!Parameters.ContainsKey(ApplyLinearScalingParameterName)) {
|
---|
| 165 | Parameters.Add(new ValueLookupParameter<BoolValue>(ApplyLinearScalingParameterName, "The switch determines if the best solution should be linearly scaled on the whole training set.", new BoolValue(true)));
|
---|
| 166 | }
|
---|
[4191] | 167 | #endregion
|
---|
| 168 | }
|
---|
[5246] | 169 |
|
---|
[5198] | 170 | protected override void Analyze(SymbolicExpressionTree[] trees, double[] validationQuality) {
|
---|
[4191] | 171 | double bestQuality = Maximization.Value ? double.NegativeInfinity : double.PositiveInfinity;
|
---|
[3996] | 172 | SymbolicExpressionTree bestTree = null;
|
---|
| 173 |
|
---|
[5246] | 174 | for (int i = 0; i < trees.Length; i++) {
|
---|
[5198] | 175 | double quality = validationQuality[i];
|
---|
[4191] | 176 | if ((Maximization.Value && quality > bestQuality) ||
|
---|
| 177 | (!Maximization.Value && quality < bestQuality)) {
|
---|
| 178 | bestQuality = quality;
|
---|
[5198] | 179 | bestTree = trees[i];
|
---|
[3996] | 180 | }
|
---|
| 181 | }
|
---|
| 182 |
|
---|
[4127] | 183 | // if the best validation tree is better than the current best solution => update
|
---|
[4191] | 184 | bool newBest =
|
---|
| 185 | BestSolutionQuality == null ||
|
---|
| 186 | (Maximization.Value && bestQuality > BestSolutionQuality.Value) ||
|
---|
| 187 | (!Maximization.Value && bestQuality < BestSolutionQuality.Value);
|
---|
| 188 | if (newBest) {
|
---|
[5437] | 189 | double upperEstimationLimit = UpperEstimationLimit != null ? UpperEstimationLimit.Value : double.PositiveInfinity;
|
---|
| 190 | double lowerEstimationLimit = LowerEstimationLimit != null ? LowerEstimationLimit.Value : double.NegativeInfinity;
|
---|
[5198] | 191 | string targetVariable = ProblemData.TargetVariable.Value;
|
---|
| 192 |
|
---|
[5331] | 193 | if (ApplyLinearScaling.Value) {
|
---|
| 194 | // calculate scaling parameters and only for the best tree using the full training set
|
---|
| 195 | double alpha, beta;
|
---|
| 196 | SymbolicRegressionScaledMeanSquaredErrorEvaluator.Calculate(SymbolicExpressionTreeInterpreter, bestTree,
|
---|
| 197 | lowerEstimationLimit, upperEstimationLimit,
|
---|
| 198 | ProblemData.Dataset, targetVariable,
|
---|
| 199 | ProblemData.TrainingIndizes, out beta, out alpha);
|
---|
[4127] | 200 |
|
---|
[5331] | 201 | // scale tree for solution
|
---|
| 202 | bestTree = SymbolicRegressionSolutionLinearScaler.Scale(bestTree, alpha, beta);
|
---|
| 203 | }
|
---|
[3996] | 204 | var model = new SymbolicRegressionModel((ISymbolicExpressionTreeInterpreter)SymbolicExpressionTreeInterpreter.Clone(),
|
---|
[5331] | 205 | bestTree);
|
---|
[4468] | 206 | var solution = new SymbolicRegressionSolution((DataAnalysisProblemData)ProblemData.Clone(), model, lowerEstimationLimit, upperEstimationLimit);
|
---|
[3996] | 207 | solution.Name = BestSolutionParameterName;
|
---|
| 208 | solution.Description = "Best solution on validation partition found over the whole run.";
|
---|
| 209 |
|
---|
| 210 | BestSolutionParameter.ActualValue = solution;
|
---|
[4191] | 211 | BestSolutionQualityParameter.ActualValue = new DoubleValue(bestQuality);
|
---|
[3996] | 212 |
|
---|
[5246] | 213 | if (CalculateSolutionComplexity.Value) {
|
---|
| 214 | BestSolutionLength = new IntValue(solution.Model.SymbolicExpressionTree.Size);
|
---|
| 215 | BestSolutionHeight = new IntValue(solution.Model.SymbolicExpressionTree.Height);
|
---|
| 216 | if (!Results.ContainsKey(BestSolutionLengthParameterName)) {
|
---|
| 217 | Results.Add(new Result(BestSolutionLengthParameterName, "Length of the best solution on the validation set", new IntValue()));
|
---|
| 218 | Results.Add(new Result(BestSolutionHeightParameterName, "Height of the best solution on the validation set", new IntValue()));
|
---|
| 219 | }
|
---|
| 220 | Results[BestSolutionLengthParameterName].Value = BestSolutionLength;
|
---|
| 221 | Results[BestSolutionHeightParameterName].Value = BestSolutionHeight;
|
---|
| 222 | }
|
---|
| 223 |
|
---|
[3996] | 224 | BestSymbolicRegressionSolutionAnalyzer.UpdateBestSolutionResults(solution, ProblemData, Results, Generations, VariableFrequencies);
|
---|
| 225 | }
|
---|
| 226 |
|
---|
| 227 | if (!Results.ContainsKey(BestSolutionQualityValuesParameterName)) {
|
---|
| 228 | Results.Add(new Result(BestSolutionQualityValuesParameterName, new DataTable(BestSolutionQualityValuesParameterName, BestSolutionQualityValuesParameterName)));
|
---|
| 229 | Results.Add(new Result(BestSolutionQualityParameterName, new DoubleValue()));
|
---|
| 230 | Results.Add(new Result(CurrentBestValidationQualityParameterName, new DoubleValue()));
|
---|
| 231 | }
|
---|
| 232 | Results[BestSolutionQualityParameterName].Value = new DoubleValue(BestSolutionQualityParameter.ActualValue.Value);
|
---|
[4191] | 233 | Results[CurrentBestValidationQualityParameterName].Value = new DoubleValue(bestQuality);
|
---|
[3996] | 234 |
|
---|
| 235 | DataTable validationValues = (DataTable)Results[BestSolutionQualityValuesParameterName].Value;
|
---|
| 236 | AddValue(validationValues, BestSolutionQualityParameter.ActualValue.Value, BestSolutionQualityParameterName, BestSolutionQualityParameterName);
|
---|
[4191] | 237 | AddValue(validationValues, bestQuality, CurrentBestValidationQualityParameterName, CurrentBestValidationQualityParameterName);
|
---|
[3996] | 238 | }
|
---|
| 239 |
|
---|
| 240 | private static void AddValue(DataTable table, double data, string name, string description) {
|
---|
| 241 | DataRow row;
|
---|
| 242 | table.Rows.TryGetValue(name, out row);
|
---|
| 243 | if (row == null) {
|
---|
| 244 | row = new DataRow(name, description);
|
---|
| 245 | row.Values.Add(data);
|
---|
| 246 | table.Rows.Add(row);
|
---|
| 247 | } else {
|
---|
| 248 | row.Values.Add(data);
|
---|
| 249 | }
|
---|
| 250 | }
|
---|
| 251 | }
|
---|
| 252 | }
|
---|