1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Linq;
|
---|
23 | using HeuristicLab.Analysis;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
28 | using HeuristicLab.Optimization;
|
---|
29 | using HeuristicLab.Parameters;
|
---|
30 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
31 | using HeuristicLab.PluginInfrastructure;
|
---|
32 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
33 |
|
---|
34 | namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic.Analyzers {
|
---|
35 | [Item("BestSymbolicRegressionSolutionAnalyzer", "An operator for analyzing the best solution of symbolic regression problems given in symbolic expression tree encoding.")]
|
---|
36 | [StorableClass]
|
---|
37 | [NonDiscoverableType]
|
---|
38 | public sealed class BestSymbolicRegressionSolutionAnalyzer : RegressionSolutionAnalyzer, ISymbolicRegressionAnalyzer {
|
---|
39 | private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
|
---|
40 | private const string SymbolicExpressionTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter";
|
---|
41 | private const string BestSolutionInputvariableCountResultName = "Variables used by best solution";
|
---|
42 | private const string VariableFrequenciesParameterName = "VariableFrequencies";
|
---|
43 | private const string VariableImpactsResultName = "Integrated variable frequencies";
|
---|
44 | private const string BestSolutionParameterName = "BestSolution";
|
---|
45 |
|
---|
46 | #region parameter properties
|
---|
47 | public ScopeTreeLookupParameter<SymbolicExpressionTree> SymbolicExpressionTreeParameter {
|
---|
48 | get { return (ScopeTreeLookupParameter<SymbolicExpressionTree>)Parameters[SymbolicExpressionTreeParameterName]; }
|
---|
49 | }
|
---|
50 | public IValueLookupParameter<ISymbolicExpressionTreeInterpreter> SymbolicExpressionTreeInterpreterParameter {
|
---|
51 | get { return (IValueLookupParameter<ISymbolicExpressionTreeInterpreter>)Parameters[SymbolicExpressionTreeInterpreterParameterName]; }
|
---|
52 | }
|
---|
53 | public ILookupParameter<SymbolicRegressionSolution> BestSolutionParameter {
|
---|
54 | get { return (ILookupParameter<SymbolicRegressionSolution>)Parameters[BestSolutionParameterName]; }
|
---|
55 | }
|
---|
56 | public ILookupParameter<DataTable> VariableFrequenciesParameter {
|
---|
57 | get { return (ILookupParameter<DataTable>)Parameters[VariableFrequenciesParameterName]; }
|
---|
58 | }
|
---|
59 | #endregion
|
---|
60 | #region properties
|
---|
61 | public ISymbolicExpressionTreeInterpreter SymbolicExpressionTreeInterpreter {
|
---|
62 | get { return SymbolicExpressionTreeInterpreterParameter.ActualValue; }
|
---|
63 | }
|
---|
64 | public ItemArray<SymbolicExpressionTree> SymbolicExpressionTree {
|
---|
65 | get { return SymbolicExpressionTreeParameter.ActualValue; }
|
---|
66 | }
|
---|
67 | public DataTable VariableFrequencies {
|
---|
68 | get { return VariableFrequenciesParameter.ActualValue; }
|
---|
69 | }
|
---|
70 | #endregion
|
---|
71 |
|
---|
72 | [StorableConstructor]
|
---|
73 | private BestSymbolicRegressionSolutionAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
74 | private BestSymbolicRegressionSolutionAnalyzer(BestSymbolicRegressionSolutionAnalyzer original, Cloner cloner) : base(original, cloner) { }
|
---|
75 | public BestSymbolicRegressionSolutionAnalyzer()
|
---|
76 | : base() {
|
---|
77 | Parameters.Add(new ScopeTreeLookupParameter<SymbolicExpressionTree>(SymbolicExpressionTreeParameterName, "The symbolic expression trees to analyze."));
|
---|
78 | Parameters.Add(new ValueLookupParameter<ISymbolicExpressionTreeInterpreter>(SymbolicExpressionTreeInterpreterParameterName, "The interpreter that should be used for the analysis of symbolic expression trees."));
|
---|
79 | Parameters.Add(new LookupParameter<DataTable>(VariableFrequenciesParameterName, "The variable frequencies table to use for the calculation of variable impacts"));
|
---|
80 | Parameters.Add(new LookupParameter<SymbolicRegressionSolution>(BestSolutionParameterName, "The best symbolic regression solution."));
|
---|
81 | }
|
---|
82 |
|
---|
83 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
84 | return new BestSymbolicRegressionSolutionAnalyzer(this, cloner);
|
---|
85 | }
|
---|
86 |
|
---|
87 | [StorableHook(HookType.AfterDeserialization)]
|
---|
88 | private void AfterDeserialization() {
|
---|
89 | if (!Parameters.ContainsKey(VariableFrequenciesParameterName)) {
|
---|
90 | Parameters.Add(new LookupParameter<DataTable>(VariableFrequenciesParameterName, "The variable frequencies table to use for the calculation of variable impacts"));
|
---|
91 | }
|
---|
92 | }
|
---|
93 |
|
---|
94 | protected override DataAnalysisSolution UpdateBestSolution() {
|
---|
95 | double upperEstimationLimit = UpperEstimationLimit != null ? UpperEstimationLimit.Value : double.PositiveInfinity;
|
---|
96 | double lowerEstimationLimit = LowerEstimationLimit != null ? LowerEstimationLimit.Value : double.NegativeInfinity;
|
---|
97 |
|
---|
98 | int i = Quality.Select((x, index) => new { index, x.Value }).OrderBy(x => x.Value).First().index;
|
---|
99 |
|
---|
100 | if (BestSolutionQualityParameter.ActualValue == null || BestSolutionQualityParameter.ActualValue.Value > Quality[i].Value) {
|
---|
101 | var model = new SymbolicRegressionModel((ISymbolicExpressionTreeInterpreter)SymbolicExpressionTreeInterpreter.Clone(),
|
---|
102 | SymbolicExpressionTree[i]);
|
---|
103 | DataAnalysisProblemData problemDataClone = (DataAnalysisProblemData)ProblemData.Clone();
|
---|
104 | var solution = new SymbolicRegressionSolution(problemDataClone, model, lowerEstimationLimit, upperEstimationLimit);
|
---|
105 | solution.Name = BestSolutionParameterName;
|
---|
106 | solution.Description = "Best solution on validation partition found over the whole run.";
|
---|
107 | BestSolutionParameter.ActualValue = solution;
|
---|
108 | BestSolutionQualityParameter.ActualValue = Quality[i];
|
---|
109 | BestSymbolicRegressionSolutionAnalyzer.UpdateSymbolicRegressionBestSolutionResults(solution, problemDataClone, Results, VariableFrequencies);
|
---|
110 | }
|
---|
111 | return BestSolutionParameter.ActualValue;
|
---|
112 | }
|
---|
113 |
|
---|
114 | public static void UpdateBestSolutionResults(SymbolicRegressionSolution solution, DataAnalysisProblemData problemData, ResultCollection results, IntValue currentGeneration, DataTable variableFrequencies) {
|
---|
115 | RegressionSolutionAnalyzer.UpdateBestSolutionResults(solution, problemData, results, currentGeneration);
|
---|
116 | UpdateSymbolicRegressionBestSolutionResults(solution, problemData, results, variableFrequencies);
|
---|
117 | }
|
---|
118 |
|
---|
119 | private static void UpdateSymbolicRegressionBestSolutionResults(SymbolicRegressionSolution solution, DataAnalysisProblemData problemData, ResultCollection results, DataTable variableFrequencies) {
|
---|
120 | if (results.ContainsKey(BestSolutionInputvariableCountResultName)) {
|
---|
121 | results[BestSolutionInputvariableCountResultName].Value = new IntValue(solution.Model.InputVariables.Count());
|
---|
122 | results[VariableImpactsResultName].Value = CalculateVariableImpacts(variableFrequencies);
|
---|
123 | } else {
|
---|
124 | results.Add(new Result(BestSolutionInputvariableCountResultName, new IntValue(solution.Model.InputVariables.Count())));
|
---|
125 | results.Add(new Result(VariableImpactsResultName, CalculateVariableImpacts(variableFrequencies)));
|
---|
126 | }
|
---|
127 | }
|
---|
128 |
|
---|
129 |
|
---|
130 | private static DoubleMatrix CalculateVariableImpacts(DataTable variableFrequencies) {
|
---|
131 | if (variableFrequencies != null) {
|
---|
132 | var impacts = new DoubleMatrix(variableFrequencies.Rows.Count, 1, new string[] { "Impact" }, variableFrequencies.Rows.Select(x => x.Name));
|
---|
133 | impacts.SortableView = true;
|
---|
134 | int rowIndex = 0;
|
---|
135 | foreach (var dataRow in variableFrequencies.Rows) {
|
---|
136 | string variableName = dataRow.Name;
|
---|
137 | impacts[rowIndex++, 0] = dataRow.Values.Average();
|
---|
138 | }
|
---|
139 | return impacts;
|
---|
140 | } else return new DoubleMatrix(1, 1);
|
---|
141 | }
|
---|
142 | }
|
---|
143 | }
|
---|