1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding.Symbols;
|
---|
29 | using HeuristicLab.Operators;
|
---|
30 | using HeuristicLab.Optimization;
|
---|
31 | using HeuristicLab.Parameters;
|
---|
32 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
33 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols;
|
---|
34 |
|
---|
35 | namespace HeuristicLab.Problems.DataAnalysis.Regression.LinearRegression {
|
---|
36 | /// <summary>
|
---|
37 | /// A base class for operators which evaluates OneMax solutions given in BinaryVector encoding.
|
---|
38 | /// </summary>
|
---|
39 | [Item("LinearRegressionSolutionCreator", "Uses linear regression to create a structure tree.")]
|
---|
40 | [StorableClass]
|
---|
41 | public class LinearRegressionSolutionCreator : SingleSuccessorOperator, ISolutionCreator {
|
---|
42 | private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
|
---|
43 | private const string DataAnalysisProblemDataParameterName = "DataAnalysisProblemData";
|
---|
44 | private const string SamplesStartParameterName = "SamplesStart";
|
---|
45 | private const string SamplesEndParameterName = "SamplesEnd";
|
---|
46 |
|
---|
47 | public LinearRegressionSolutionCreator() {
|
---|
48 | Parameters.Add(new LookupParameter<SymbolicExpressionTree>(SymbolicExpressionTreeParameterName, "The resulting solution encoded as a symbolic expression tree."));
|
---|
49 | Parameters.Add(new LookupParameter<DataAnalysisProblemData>(DataAnalysisProblemDataParameterName, "The problem data on which the linear regression should be calculated."));
|
---|
50 | Parameters.Add(new ValueLookupParameter<IntValue>(SamplesStartParameterName, "The start of the samples on which the linear regression should be applied."));
|
---|
51 | Parameters.Add(new ValueLookupParameter<IntValue>(SamplesEndParameterName, "The end of the samples on which the linear regression should be applied."));
|
---|
52 | }
|
---|
53 | [StorableConstructor]
|
---|
54 | public LinearRegressionSolutionCreator(bool deserializing)
|
---|
55 | : base(deserializing) {
|
---|
56 | }
|
---|
57 |
|
---|
58 | #region parameter properties
|
---|
59 | public ILookupParameter<SymbolicExpressionTree> SymbolicExpressionTreeParameter {
|
---|
60 | get { return (ILookupParameter<SymbolicExpressionTree>)Parameters[SymbolicExpressionTreeParameterName]; }
|
---|
61 | }
|
---|
62 | public SymbolicExpressionTree SymbolicExpressionTree {
|
---|
63 | get { return SymbolicExpressionTreeParameter.ActualValue; }
|
---|
64 | set { SymbolicExpressionTreeParameter.ActualValue = value; }
|
---|
65 | }
|
---|
66 |
|
---|
67 | public ILookupParameter<DataAnalysisProblemData> DataAnalysisProblemDataParameter {
|
---|
68 | get { return (ILookupParameter<DataAnalysisProblemData>)Parameters[DataAnalysisProblemDataParameterName]; }
|
---|
69 | }
|
---|
70 | public DataAnalysisProblemData DataAnalysisProblemData {
|
---|
71 | get { return DataAnalysisProblemDataParameter.ActualValue; }
|
---|
72 | set { DataAnalysisProblemDataParameter.ActualValue = value; }
|
---|
73 | }
|
---|
74 |
|
---|
75 | public IValueLookupParameter<IntValue> SamplesStartParameter {
|
---|
76 | get { return (IValueLookupParameter<IntValue>)Parameters[SamplesStartParameterName]; }
|
---|
77 | }
|
---|
78 | public IntValue SamplesStart {
|
---|
79 | get { return SamplesStartParameter.ActualValue; }
|
---|
80 | set { SamplesStartParameter.ActualValue = value; }
|
---|
81 | }
|
---|
82 |
|
---|
83 | public IValueLookupParameter<IntValue> SamplesEndParameter {
|
---|
84 | get { return (IValueLookupParameter<IntValue>)Parameters[SamplesEndParameterName]; }
|
---|
85 | }
|
---|
86 | public IntValue SamplesEnd {
|
---|
87 | get { return SamplesEndParameter.ActualValue; }
|
---|
88 | set { SamplesEndParameter.ActualValue = value; }
|
---|
89 | }
|
---|
90 | #endregion
|
---|
91 |
|
---|
92 |
|
---|
93 | public override IOperation Apply() {
|
---|
94 | double rmsError, cvRmsError;
|
---|
95 | SymbolicExpressionTree = CreateSymbolicExpressionTree(DataAnalysisProblemData.Dataset, DataAnalysisProblemData.TargetVariable.Value, DataAnalysisProblemData.InputVariables.CheckedItems.Select(x => x.Value.Value), SamplesStart.Value, SamplesEnd.Value, out rmsError, out cvRmsError);
|
---|
96 | return base.Apply();
|
---|
97 | }
|
---|
98 |
|
---|
99 | public static SymbolicExpressionTree CreateSymbolicExpressionTree(Dataset dataset, string targetVariable, IEnumerable<string> allowedInputVariables, int start, int end, out double rmsError, out double cvRmsError) {
|
---|
100 | double[,] inputMatrix = LinearRegressionUtil.PrepareInputMatrix(dataset, targetVariable, allowedInputVariables, start, end);
|
---|
101 |
|
---|
102 | alglib.linreg.linearmodel lm = new alglib.linreg.linearmodel();
|
---|
103 | alglib.linreg.lrreport ar = new alglib.linreg.lrreport();
|
---|
104 | int nRows = inputMatrix.GetLength(0);
|
---|
105 | int nFeatures = inputMatrix.GetLength(1) - 1;
|
---|
106 | double[] coefficients = new double[nFeatures + 1]; //last coefficient is for the constant
|
---|
107 |
|
---|
108 | int retVal = 1;
|
---|
109 | alglib.linreg.lrbuild(ref inputMatrix, nRows, nFeatures, ref retVal, ref lm, ref ar);
|
---|
110 | if (retVal != 1) throw new ArgumentException("Error in calculation of linear regression model");
|
---|
111 | rmsError = ar.rmserror;
|
---|
112 | cvRmsError = ar.cvrmserror;
|
---|
113 |
|
---|
114 | for (int i = 0; i < nFeatures + 1; i++)
|
---|
115 | coefficients[i] = lm.w[i + 4];
|
---|
116 |
|
---|
117 | SymbolicExpressionTree tree = new SymbolicExpressionTree(new ProgramRootSymbol().CreateTreeNode());
|
---|
118 | SymbolicExpressionTreeNode startNode = new StartSymbol().CreateTreeNode();
|
---|
119 | tree.Root.AddSubTree(startNode);
|
---|
120 | SymbolicExpressionTreeNode addition = new Addition().CreateTreeNode();
|
---|
121 | startNode.AddSubTree(addition);
|
---|
122 |
|
---|
123 | int col = 0;
|
---|
124 | foreach (string column in allowedInputVariables) {
|
---|
125 | VariableTreeNode vNode = (VariableTreeNode)new HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols.Variable().CreateTreeNode();
|
---|
126 | vNode.VariableName = column;
|
---|
127 | vNode.Weight = coefficients[col];
|
---|
128 | addition.AddSubTree(vNode);
|
---|
129 | col++;
|
---|
130 | }
|
---|
131 |
|
---|
132 | ConstantTreeNode cNode = (ConstantTreeNode)new Constant().CreateTreeNode();
|
---|
133 | cNode.Value = coefficients[coefficients.Length - 1];
|
---|
134 | addition.AddSubTree(cNode);
|
---|
135 |
|
---|
136 | return tree;
|
---|
137 | }
|
---|
138 | }
|
---|
139 | }
|
---|