1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
28 | using HeuristicLab.Problems.DataAnalysis.Regression.Symbolic;
|
---|
29 |
|
---|
30 | namespace HeuristicLab.Problems.DataAnalysis.Classification {
|
---|
31 | /// <summary>
|
---|
32 | /// Represents a solution for a symbolic classification problem which can be visualized in the GUI.
|
---|
33 | /// </summary>
|
---|
34 | [Item("SymbolicClassificationSolution", "Represents a solution for a symbolic classification problem which can be visualized in the GUI.")]
|
---|
35 | [StorableClass]
|
---|
36 | public class SymbolicClassificationSolution : SymbolicRegressionSolution, IClassificationSolution {
|
---|
37 | public new ClassificationProblemData ProblemData {
|
---|
38 | get { return (ClassificationProblemData)base.ProblemData; }
|
---|
39 | set { base.ProblemData = value; }
|
---|
40 | }
|
---|
41 |
|
---|
42 | #region properties
|
---|
43 | private List<double> optimalThresholds;
|
---|
44 | private List<double> actualThresholds;
|
---|
45 | public IEnumerable<double> Thresholds {
|
---|
46 | get {
|
---|
47 | if (actualThresholds == null) RecalculateEstimatedValues();
|
---|
48 | return actualThresholds;
|
---|
49 | }
|
---|
50 | set {
|
---|
51 | if (actualThresholds != null && actualThresholds.SequenceEqual(value))
|
---|
52 | return;
|
---|
53 | actualThresholds = new List<double>(value);
|
---|
54 | OnThresholdsChanged();
|
---|
55 | }
|
---|
56 | }
|
---|
57 |
|
---|
58 | public IEnumerable<double> EstimatedClassValues {
|
---|
59 | get { return GetEstimatedClassValues(Enumerable.Range(0, ProblemData.Dataset.Rows)); }
|
---|
60 | }
|
---|
61 |
|
---|
62 | public IEnumerable<double> EstimatedTrainingClassValues {
|
---|
63 | get { return GetEstimatedClassValues(ProblemData.TrainingIndizes); }
|
---|
64 | }
|
---|
65 |
|
---|
66 | public IEnumerable<double> EstimatedTestClassValues {
|
---|
67 | get { return GetEstimatedClassValues(ProblemData.TestIndizes); }
|
---|
68 | }
|
---|
69 |
|
---|
70 | [StorableConstructor]
|
---|
71 | protected SymbolicClassificationSolution(bool deserializing) : base(deserializing) { }
|
---|
72 | protected SymbolicClassificationSolution(SymbolicClassificationSolution original, Cloner cloner) : base(original, cloner) { }
|
---|
73 | public SymbolicClassificationSolution(ClassificationProblemData problemData, SymbolicRegressionModel model, double lowerEstimationLimit, double upperEstimationLimit)
|
---|
74 | : base(problemData, model, lowerEstimationLimit, upperEstimationLimit) {
|
---|
75 | }
|
---|
76 |
|
---|
77 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
78 | return new SymbolicClassificationSolution(this, cloner);
|
---|
79 | }
|
---|
80 |
|
---|
81 | protected override void RecalculateEstimatedValues() {
|
---|
82 | estimatedValues =
|
---|
83 | (from x in Model.GetEstimatedValues(ProblemData, 0, ProblemData.Dataset.Rows)
|
---|
84 | let boundedX = Math.Min(UpperEstimationLimit, Math.Max(LowerEstimationLimit, x))
|
---|
85 | select double.IsNaN(boundedX) ? UpperEstimationLimit : boundedX).ToList();
|
---|
86 | RecalculateClassIntermediates();
|
---|
87 | OnEstimatedValuesChanged();
|
---|
88 | }
|
---|
89 |
|
---|
90 | private void RecalculateClassIntermediates() {
|
---|
91 | int slices = 100;
|
---|
92 |
|
---|
93 | List<int> classInstances = (from classValue in ProblemData.Dataset.GetVariableValues(ProblemData.TargetVariable.Value)
|
---|
94 | group classValue by classValue into grouping
|
---|
95 | select grouping.Count()).ToList();
|
---|
96 |
|
---|
97 | List<KeyValuePair<double, double>> estimatedTargetValues =
|
---|
98 | (from row in ProblemData.TrainingIndizes
|
---|
99 | select new KeyValuePair<double, double>(
|
---|
100 | estimatedValues[row],
|
---|
101 | ProblemData.Dataset[ProblemData.TargetVariable.Value, row])).ToList();
|
---|
102 |
|
---|
103 | List<double> originalClasses = ProblemData.SortedClassValues.ToList();
|
---|
104 | double[] thresholds = new double[ProblemData.NumberOfClasses + 1];
|
---|
105 | thresholds[0] = double.NegativeInfinity;
|
---|
106 | thresholds[thresholds.Length - 1] = double.PositiveInfinity;
|
---|
107 |
|
---|
108 | for (int i = 1; i < thresholds.Length - 1; i++) {
|
---|
109 | double lowerThreshold = thresholds[i - 1];
|
---|
110 | double actualThreshold = originalClasses[i - 1];
|
---|
111 | double thresholdIncrement = (originalClasses[i] - originalClasses[i - 1]) / slices;
|
---|
112 |
|
---|
113 | double lowestBestThreshold = double.NaN;
|
---|
114 | double highestBestThreshold = double.NaN;
|
---|
115 | double bestClassificationScore = double.PositiveInfinity;
|
---|
116 | bool seriesOfEqualClassificationScores = false;
|
---|
117 |
|
---|
118 | while (actualThreshold < originalClasses[i]) {
|
---|
119 | double classificationScore = 0.0;
|
---|
120 |
|
---|
121 | foreach (KeyValuePair<double, double> estimatedTarget in estimatedTargetValues) {
|
---|
122 | //all positives
|
---|
123 | if (estimatedTarget.Value.IsAlmost(originalClasses[i - 1])) {
|
---|
124 | if (estimatedTarget.Key > lowerThreshold && estimatedTarget.Key < actualThreshold)
|
---|
125 | //true positive
|
---|
126 | classificationScore += ProblemData.MisclassificationMatrix[i - 1, i - 1];
|
---|
127 | else
|
---|
128 | //false negative
|
---|
129 | classificationScore += ProblemData.MisclassificationMatrix[i, i - 1];
|
---|
130 | }
|
---|
131 | //all negatives
|
---|
132 | else {
|
---|
133 | if (estimatedTarget.Key > lowerThreshold && estimatedTarget.Key < actualThreshold)
|
---|
134 | //false positive
|
---|
135 | classificationScore += ProblemData.MisclassificationMatrix[i - 1, i];
|
---|
136 | else
|
---|
137 | //true negative, consider only upper class
|
---|
138 | classificationScore += ProblemData.MisclassificationMatrix[i, i];
|
---|
139 | }
|
---|
140 | }
|
---|
141 |
|
---|
142 | //new best classification score found
|
---|
143 | if (classificationScore < bestClassificationScore) {
|
---|
144 | bestClassificationScore = classificationScore;
|
---|
145 | lowestBestThreshold = actualThreshold;
|
---|
146 | highestBestThreshold = actualThreshold;
|
---|
147 | seriesOfEqualClassificationScores = true;
|
---|
148 | }
|
---|
149 | //equal classification scores => if seriesOfEqualClassifcationScores == true update highest threshold
|
---|
150 | else if (Math.Abs(classificationScore - bestClassificationScore) < double.Epsilon && seriesOfEqualClassificationScores)
|
---|
151 | highestBestThreshold = actualThreshold;
|
---|
152 | //worse classificatoin score found reset seriesOfEqualClassifcationScores
|
---|
153 | else seriesOfEqualClassificationScores = false;
|
---|
154 |
|
---|
155 | actualThreshold += thresholdIncrement;
|
---|
156 | }
|
---|
157 | //scale lowest thresholds and highest found optimal threshold according to the misclassification matrix
|
---|
158 | double falseNegativePenalty = ProblemData.MisclassificationMatrix[i, i - 1];
|
---|
159 | double falsePositivePenalty = ProblemData.MisclassificationMatrix[i - 1, i];
|
---|
160 | thresholds[i] = (lowestBestThreshold * falsePositivePenalty + highestBestThreshold * falseNegativePenalty) / (falseNegativePenalty + falsePositivePenalty);
|
---|
161 | }
|
---|
162 | this.optimalThresholds = new List<double>(thresholds);
|
---|
163 | this.actualThresholds = optimalThresholds;
|
---|
164 | }
|
---|
165 |
|
---|
166 | public IEnumerable<double> GetEstimatedClassValues(IEnumerable<int> rows) {
|
---|
167 | double[] classValues = ProblemData.SortedClassValues.ToArray();
|
---|
168 | if (estimatedValues == null)
|
---|
169 | RecalculateEstimatedValues();
|
---|
170 | foreach (int row in rows) {
|
---|
171 | double value = estimatedValues[row];
|
---|
172 | int classIndex = 0;
|
---|
173 | while (value > actualThresholds[classIndex + 1])
|
---|
174 | classIndex++;
|
---|
175 | yield return classValues[classIndex];
|
---|
176 | }
|
---|
177 | }
|
---|
178 | #endregion
|
---|
179 |
|
---|
180 | public event EventHandler ThresholdsChanged;
|
---|
181 | private void OnThresholdsChanged() {
|
---|
182 | var handler = ThresholdsChanged;
|
---|
183 | if (handler != null)
|
---|
184 | ThresholdsChanged(this, EventArgs.Empty);
|
---|
185 | }
|
---|
186 | }
|
---|
187 | }
|
---|