1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Analysis;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
28 | using HeuristicLab.Operators;
|
---|
29 | using HeuristicLab.Optimization;
|
---|
30 | using HeuristicLab.Parameters;
|
---|
31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
32 | using HeuristicLab.Problems.DataAnalysis.Regression.Symbolic;
|
---|
33 | using HeuristicLab.Problems.DataAnalysis.Regression.Symbolic.Analyzers;
|
---|
34 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
35 |
|
---|
36 | namespace HeuristicLab.Problems.DataAnalysis.Classification {
|
---|
37 | [Item("ValidationBestSymbolicClassificationSolutionAnalyzer", "An operator that analyzes the validation best symbolic classification solution.")]
|
---|
38 | [StorableClass]
|
---|
39 | public class ValidationBestSymbolicClassificationSolutionAnalyzer : SingleSuccessorOperator, ISymbolicClassificationAnalyzer {
|
---|
40 | private const string MaximizationParameterName = "Maximization";
|
---|
41 | private const string GenerationsParameterName = "Generations";
|
---|
42 | private const string RandomParameterName = "Random";
|
---|
43 | private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
|
---|
44 | private const string SymbolicExpressionTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter";
|
---|
45 |
|
---|
46 | private const string ClassificationProblemDataParameterName = "ClassificationProblemData";
|
---|
47 | private const string EvaluatorParameterName = "Evaluator";
|
---|
48 | private const string ValidationSamplesStartParameterName = "SamplesStart";
|
---|
49 | private const string ValidationSamplesEndParameterName = "SamplesEnd";
|
---|
50 | private const string RelativeNumberOfEvaluatedSamplesParameterName = "RelativeNumberOfEvaluatedSamples";
|
---|
51 | private const string UpperEstimationLimitParameterName = "UpperEstimationLimit";
|
---|
52 | private const string LowerEstimationLimitParameterName = "LowerEstimationLimit";
|
---|
53 |
|
---|
54 | private const string ResultsParameterName = "Results";
|
---|
55 | private const string BestValidationQualityParameterName = "Best validation quality";
|
---|
56 | private const string BestValidationSolutionParameterName = "Best validation solution";
|
---|
57 | private const string BestSolutionAccuracyTrainingParameterName = "Best solution accuracy (training)";
|
---|
58 | private const string BestSolutionAccuracyTestParameterName = "Best solution accuracy (test)";
|
---|
59 | private const string VariableFrequenciesParameterName = "VariableFrequencies";
|
---|
60 |
|
---|
61 | #region parameter properties
|
---|
62 | public ILookupParameter<BoolValue> MaximizationParameter {
|
---|
63 | get { return (ILookupParameter<BoolValue>)Parameters[MaximizationParameterName]; }
|
---|
64 | }
|
---|
65 | public ILookupParameter<IntValue> GenerationsParameter {
|
---|
66 | get { return (ILookupParameter<IntValue>)Parameters[GenerationsParameterName]; }
|
---|
67 | }
|
---|
68 | public ILookupParameter<IRandom> RandomParameter {
|
---|
69 | get { return (ILookupParameter<IRandom>)Parameters[RandomParameterName]; }
|
---|
70 | }
|
---|
71 | public ScopeTreeLookupParameter<SymbolicExpressionTree> SymbolicExpressionTreeParameter {
|
---|
72 | get { return (ScopeTreeLookupParameter<SymbolicExpressionTree>)Parameters[SymbolicExpressionTreeParameterName]; }
|
---|
73 | }
|
---|
74 | public IValueLookupParameter<ISymbolicExpressionTreeInterpreter> SymbolicExpressionTreeInterpreterParameter {
|
---|
75 | get { return (IValueLookupParameter<ISymbolicExpressionTreeInterpreter>)Parameters[SymbolicExpressionTreeInterpreterParameterName]; }
|
---|
76 | }
|
---|
77 |
|
---|
78 | public ILookupParameter<ClassificationProblemData> ClassificationProblemDataParameter {
|
---|
79 | get { return (ILookupParameter<ClassificationProblemData>)Parameters[ClassificationProblemDataParameterName]; }
|
---|
80 | }
|
---|
81 | public ILookupParameter<ISymbolicClassificationEvaluator> EvaluatorParameter {
|
---|
82 | get { return (ILookupParameter<ISymbolicClassificationEvaluator>)Parameters[EvaluatorParameterName]; }
|
---|
83 | }
|
---|
84 | public IValueLookupParameter<IntValue> ValidationSamplesStartParameter {
|
---|
85 | get { return (IValueLookupParameter<IntValue>)Parameters[ValidationSamplesStartParameterName]; }
|
---|
86 | }
|
---|
87 | public IValueLookupParameter<IntValue> ValidationSamplesEndParameter {
|
---|
88 | get { return (IValueLookupParameter<IntValue>)Parameters[ValidationSamplesEndParameterName]; }
|
---|
89 | }
|
---|
90 | public IValueParameter<PercentValue> RelativeNumberOfEvaluatedSamplesParameter {
|
---|
91 | get { return (IValueParameter<PercentValue>)Parameters[RelativeNumberOfEvaluatedSamplesParameterName]; }
|
---|
92 | }
|
---|
93 | public IValueLookupParameter<DoubleValue> UpperEstimationLimitParameter {
|
---|
94 | get { return (IValueLookupParameter<DoubleValue>)Parameters[UpperEstimationLimitParameterName]; }
|
---|
95 | }
|
---|
96 | public IValueLookupParameter<DoubleValue> LowerEstimationLimitParameter {
|
---|
97 | get { return (IValueLookupParameter<DoubleValue>)Parameters[LowerEstimationLimitParameterName]; }
|
---|
98 | }
|
---|
99 | public ILookupParameter<DataTable> VariableFrequenciesParameter {
|
---|
100 | get { return (ILookupParameter<DataTable>)Parameters[VariableFrequenciesParameterName]; }
|
---|
101 | }
|
---|
102 |
|
---|
103 | public ILookupParameter<ResultCollection> ResultsParameter {
|
---|
104 | get { return (ILookupParameter<ResultCollection>)Parameters[ResultsParameterName]; }
|
---|
105 | }
|
---|
106 | public ILookupParameter<DoubleValue> BestValidationQualityParameter {
|
---|
107 | get { return (ILookupParameter<DoubleValue>)Parameters[BestValidationQualityParameterName]; }
|
---|
108 | }
|
---|
109 | public ILookupParameter<SymbolicClassificationSolution> BestValidationSolutionParameter {
|
---|
110 | get { return (ILookupParameter<SymbolicClassificationSolution>)Parameters[BestValidationSolutionParameterName]; }
|
---|
111 | }
|
---|
112 | public ILookupParameter<DoubleValue> BestSolutionAccuracyTrainingParameter {
|
---|
113 | get { return (ILookupParameter<DoubleValue>)Parameters[BestSolutionAccuracyTrainingParameterName]; }
|
---|
114 | }
|
---|
115 | public ILookupParameter<DoubleValue> BestSolutionAccuracyTestParameter {
|
---|
116 | get { return (ILookupParameter<DoubleValue>)Parameters[BestSolutionAccuracyTestParameterName]; }
|
---|
117 | }
|
---|
118 | #endregion
|
---|
119 | #region properties
|
---|
120 | public BoolValue Maximization {
|
---|
121 | get { return MaximizationParameter.ActualValue; }
|
---|
122 | }
|
---|
123 | public IntValue Generations {
|
---|
124 | get { return GenerationsParameter.ActualValue; }
|
---|
125 | }
|
---|
126 | public IRandom Random {
|
---|
127 | get { return RandomParameter.ActualValue; }
|
---|
128 | }
|
---|
129 | public ItemArray<SymbolicExpressionTree> SymbolicExpressionTree {
|
---|
130 | get { return SymbolicExpressionTreeParameter.ActualValue; }
|
---|
131 | }
|
---|
132 | public ISymbolicExpressionTreeInterpreter SymbolicExpressionTreeInterpreter {
|
---|
133 | get { return SymbolicExpressionTreeInterpreterParameter.ActualValue; }
|
---|
134 | }
|
---|
135 |
|
---|
136 | public ClassificationProblemData ClassificationProblemData {
|
---|
137 | get { return ClassificationProblemDataParameter.ActualValue; }
|
---|
138 | }
|
---|
139 | public ISymbolicClassificationEvaluator Evaluator {
|
---|
140 | get { return EvaluatorParameter.ActualValue; }
|
---|
141 | }
|
---|
142 | public IntValue ValidiationSamplesStart {
|
---|
143 | get { return ValidationSamplesStartParameter.ActualValue; }
|
---|
144 | }
|
---|
145 | public IntValue ValidationSamplesEnd {
|
---|
146 | get { return ValidationSamplesEndParameter.ActualValue; }
|
---|
147 | }
|
---|
148 | public PercentValue RelativeNumberOfEvaluatedSamples {
|
---|
149 | get { return RelativeNumberOfEvaluatedSamplesParameter.Value; }
|
---|
150 | }
|
---|
151 | public DoubleValue UpperEstimationLimit {
|
---|
152 | get { return UpperEstimationLimitParameter.ActualValue; }
|
---|
153 | }
|
---|
154 | public DoubleValue LowerEstimationLimit {
|
---|
155 | get { return LowerEstimationLimitParameter.ActualValue; }
|
---|
156 | }
|
---|
157 | public DataTable VariableFrequencies {
|
---|
158 | get { return VariableFrequenciesParameter.ActualValue; }
|
---|
159 | }
|
---|
160 |
|
---|
161 | public ResultCollection Results {
|
---|
162 | get { return ResultsParameter.ActualValue; }
|
---|
163 | }
|
---|
164 | public DoubleValue BestValidationQuality {
|
---|
165 | get { return BestValidationQualityParameter.ActualValue; }
|
---|
166 | protected set { BestValidationQualityParameter.ActualValue = value; }
|
---|
167 | }
|
---|
168 | public SymbolicClassificationSolution BestValidationSolution {
|
---|
169 | get { return BestValidationSolutionParameter.ActualValue; }
|
---|
170 | protected set { BestValidationSolutionParameter.ActualValue = value; }
|
---|
171 | }
|
---|
172 | public DoubleValue BestSolutionAccuracyTraining {
|
---|
173 | get { return BestSolutionAccuracyTrainingParameter.ActualValue; }
|
---|
174 | protected set { BestSolutionAccuracyTrainingParameter.ActualValue = value; }
|
---|
175 | }
|
---|
176 | public DoubleValue BestSolutionAccuracyTest {
|
---|
177 | get { return BestSolutionAccuracyTestParameter.ActualValue; }
|
---|
178 | protected set { BestSolutionAccuracyTestParameter.ActualValue = value; }
|
---|
179 | }
|
---|
180 | #endregion
|
---|
181 |
|
---|
182 | public ValidationBestSymbolicClassificationSolutionAnalyzer()
|
---|
183 | : base() {
|
---|
184 | Parameters.Add(new LookupParameter<BoolValue>(MaximizationParameterName, "The direction of optimization."));
|
---|
185 | Parameters.Add(new LookupParameter<IntValue>(GenerationsParameterName, "The number of generations calculated so far."));
|
---|
186 | Parameters.Add(new LookupParameter<IRandom>(RandomParameterName, "The random generator to use."));
|
---|
187 | Parameters.Add(new ScopeTreeLookupParameter<SymbolicExpressionTree>(SymbolicExpressionTreeParameterName, "The symbolic expression trees to analyze."));
|
---|
188 | Parameters.Add(new ValueLookupParameter<ISymbolicExpressionTreeInterpreter>(SymbolicExpressionTreeInterpreterParameterName, "The interpreter that should be used for the analysis of symbolic expression trees."));
|
---|
189 |
|
---|
190 | Parameters.Add(new LookupParameter<ClassificationProblemData>(ClassificationProblemDataParameterName, "The problem data for which the symbolic expression tree is a solution."));
|
---|
191 | Parameters.Add(new LookupParameter<ISymbolicClassificationEvaluator>(EvaluatorParameterName, "The evaluator which should be used to evaluate the solution on the validation set."));
|
---|
192 | Parameters.Add(new ValueLookupParameter<IntValue>(ValidationSamplesStartParameterName, "The first index of the validation partition of the data set."));
|
---|
193 | Parameters.Add(new ValueLookupParameter<IntValue>(ValidationSamplesEndParameterName, "The last index of the validation partition of the data set."));
|
---|
194 | Parameters.Add(new ValueParameter<PercentValue>(RelativeNumberOfEvaluatedSamplesParameterName, "The relative number of samples of the dataset partition, which should be randomly chosen for evaluation between the start and end index.", new PercentValue(1)));
|
---|
195 | Parameters.Add(new ValueLookupParameter<DoubleValue>(UpperEstimationLimitParameterName, "The upper estimation limit that was set for the evaluation of the symbolic expression trees."));
|
---|
196 | Parameters.Add(new ValueLookupParameter<DoubleValue>(LowerEstimationLimitParameterName, "The lower estimation limit that was set for the evaluation of the symbolic expression trees."));
|
---|
197 | Parameters.Add(new LookupParameter<DataTable>(VariableFrequenciesParameterName, "The variable frequencies table to use for the calculation of variable impacts"));
|
---|
198 |
|
---|
199 | Parameters.Add(new ValueLookupParameter<ResultCollection>(ResultsParameterName, "The results collection where the analysis values should be stored."));
|
---|
200 | Parameters.Add(new LookupParameter<DoubleValue>(BestValidationQualityParameterName, "The validation quality of the best solution in the current run."));
|
---|
201 | Parameters.Add(new LookupParameter<SymbolicClassificationSolution>(BestValidationSolutionParameterName, "The best solution on the validation data found in the current run."));
|
---|
202 | Parameters.Add(new LookupParameter<DoubleValue>(BestSolutionAccuracyTrainingParameterName, "The training accuracy of the best solution."));
|
---|
203 | Parameters.Add(new LookupParameter<DoubleValue>(BestSolutionAccuracyTestParameterName, "The test accuracy of the best solution."));
|
---|
204 | }
|
---|
205 |
|
---|
206 | [StorableConstructor]
|
---|
207 | private ValidationBestSymbolicClassificationSolutionAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
208 |
|
---|
209 | public override IOperation Apply() {
|
---|
210 | var trees = SymbolicExpressionTree;
|
---|
211 | string targetVariable = ClassificationProblemData.TargetVariable.Value;
|
---|
212 |
|
---|
213 | // select a random subset of rows in the validation set
|
---|
214 | int validationStart = ValidiationSamplesStart.Value;
|
---|
215 | int validationEnd = ValidationSamplesEnd.Value;
|
---|
216 | int seed = Random.Next();
|
---|
217 | int count = (int)((validationEnd - validationStart) * RelativeNumberOfEvaluatedSamples.Value);
|
---|
218 | if (count == 0) count = 1;
|
---|
219 | IEnumerable<int> rows = RandomEnumerable.SampleRandomNumbers(seed, validationStart, validationEnd, count)
|
---|
220 | .Where(row => row < ClassificationProblemData.TestSamplesStart.Value || ClassificationProblemData.TestSamplesEnd.Value <= row);
|
---|
221 |
|
---|
222 | double upperEstimationLimit = UpperEstimationLimit != null ? UpperEstimationLimit.Value : double.PositiveInfinity;
|
---|
223 | double lowerEstimationLimit = LowerEstimationLimit != null ? LowerEstimationLimit.Value : double.NegativeInfinity;
|
---|
224 |
|
---|
225 | double bestQuality = Maximization.Value ? double.NegativeInfinity : double.PositiveInfinity;
|
---|
226 | SymbolicExpressionTree bestTree = null;
|
---|
227 |
|
---|
228 | foreach (var tree in trees) {
|
---|
229 | double quality = Evaluator.Evaluate(SymbolicExpressionTreeInterpreter, tree,
|
---|
230 | lowerEstimationLimit, upperEstimationLimit, ClassificationProblemData.Dataset,
|
---|
231 | targetVariable, rows);
|
---|
232 |
|
---|
233 | if ((Maximization.Value && quality > bestQuality) ||
|
---|
234 | (!Maximization.Value && quality < bestQuality)) {
|
---|
235 | bestQuality = quality;
|
---|
236 | bestTree = tree;
|
---|
237 | }
|
---|
238 | }
|
---|
239 |
|
---|
240 | // if the best validation tree is better than the current best solution => update
|
---|
241 | bool newBest =
|
---|
242 | BestValidationQuality == null ||
|
---|
243 | (Maximization.Value && bestQuality > BestValidationQuality.Value) ||
|
---|
244 | (!Maximization.Value && bestQuality < BestValidationQuality.Value);
|
---|
245 | if (newBest) {
|
---|
246 | double alpha, beta;
|
---|
247 | SymbolicRegressionScaledMeanSquaredErrorEvaluator.Calculate(SymbolicExpressionTreeInterpreter, bestTree,
|
---|
248 | lowerEstimationLimit, upperEstimationLimit,
|
---|
249 | ClassificationProblemData.Dataset, targetVariable,
|
---|
250 | ClassificationProblemData.TrainingIndizes, out beta, out alpha);
|
---|
251 |
|
---|
252 | // scale tree for solution
|
---|
253 | var scaledTree = SymbolicRegressionSolutionLinearScaler.Scale(bestTree, alpha, beta);
|
---|
254 | var model = new SymbolicRegressionModel((ISymbolicExpressionTreeInterpreter)SymbolicExpressionTreeInterpreter.Clone(),
|
---|
255 | scaledTree);
|
---|
256 |
|
---|
257 | if (BestValidationSolution == null) {
|
---|
258 | BestValidationSolution = new SymbolicClassificationSolution(ClassificationProblemData, model, LowerEstimationLimit.Value, UpperEstimationLimit.Value);
|
---|
259 | BestValidationSolution.Name = BestValidationSolutionParameterName;
|
---|
260 | BestValidationSolution.Description = "Best solution on validation partition found over the whole run.";
|
---|
261 | BestValidationQuality = new DoubleValue(bestQuality);
|
---|
262 | } else {
|
---|
263 | BestValidationSolution.Model = model;
|
---|
264 | }
|
---|
265 |
|
---|
266 | UpdateBestSolutionResults();
|
---|
267 | }
|
---|
268 | return base.Apply();
|
---|
269 | }
|
---|
270 |
|
---|
271 | private void UpdateBestSolutionResults() {
|
---|
272 | BestSymbolicRegressionSolutionAnalyzer.UpdateBestSolutionResults(BestValidationSolution, ClassificationProblemData, Results, Generations, VariableFrequencies);
|
---|
273 |
|
---|
274 | IEnumerable<double> trainingValues = ClassificationProblemData.Dataset.GetEnumeratedVariableValues(
|
---|
275 | ClassificationProblemData.TargetVariable.Value, ClassificationProblemData.TrainingIndizes);
|
---|
276 | IEnumerable<double> testValues = ClassificationProblemData.Dataset.GetEnumeratedVariableValues(
|
---|
277 | ClassificationProblemData.TargetVariable.Value, ClassificationProblemData.TestIndizes);
|
---|
278 |
|
---|
279 | OnlineAccuracyEvaluator accuracyEvaluator = new OnlineAccuracyEvaluator();
|
---|
280 | var originalEnumerator = trainingValues.GetEnumerator();
|
---|
281 | var estimatedEnumerator = BestValidationSolution.EstimatedTrainingClassValues.GetEnumerator();
|
---|
282 | while (originalEnumerator.MoveNext() & estimatedEnumerator.MoveNext()) {
|
---|
283 | accuracyEvaluator.Add(originalEnumerator.Current, estimatedEnumerator.Current);
|
---|
284 | }
|
---|
285 | double trainingAccuracy = accuracyEvaluator.Accuracy;
|
---|
286 |
|
---|
287 | accuracyEvaluator.Reset();
|
---|
288 | originalEnumerator = testValues.GetEnumerator();
|
---|
289 | estimatedEnumerator = BestValidationSolution.EstimatedTestClassValues.GetEnumerator();
|
---|
290 | while (originalEnumerator.MoveNext() & estimatedEnumerator.MoveNext()) {
|
---|
291 | accuracyEvaluator.Add(originalEnumerator.Current, estimatedEnumerator.Current);
|
---|
292 | }
|
---|
293 | double testAccuracy = accuracyEvaluator.Accuracy;
|
---|
294 |
|
---|
295 | if (!Results.ContainsKey(BestSolutionAccuracyTrainingParameterName)) {
|
---|
296 | BestSolutionAccuracyTraining = new DoubleValue(trainingAccuracy);
|
---|
297 | BestSolutionAccuracyTest = new DoubleValue(testAccuracy);
|
---|
298 |
|
---|
299 | Results.Add(new Result(BestSolutionAccuracyTrainingParameterName, BestSolutionAccuracyTraining));
|
---|
300 | Results.Add(new Result(BestSolutionAccuracyTestParameterName, BestSolutionAccuracyTest));
|
---|
301 | } else {
|
---|
302 | BestSolutionAccuracyTraining.Value = trainingAccuracy;
|
---|
303 | BestSolutionAccuracyTest.Value = testAccuracy;
|
---|
304 | }
|
---|
305 | }
|
---|
306 |
|
---|
307 | }
|
---|
308 | }
|
---|