1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.Optimization.Operators {
|
---|
30 | /// <summary>
|
---|
31 | /// A base class for items that perform similarity calculation between two solutions.
|
---|
32 | /// </summary>
|
---|
33 | [Item("SimilarityCalculator", "A base class for items that perform similarity calculation between two solutions.")]
|
---|
34 | [StorableClass]
|
---|
35 | public abstract class SolutionSimilarityCalculator : Item, ISolutionSimilarityCalculator {
|
---|
36 | protected abstract bool IsCommutative { get; }
|
---|
37 |
|
---|
38 | #region Properties
|
---|
39 | [Storable]
|
---|
40 | public string SolutionVariableName { get; set; }
|
---|
41 | [Storable]
|
---|
42 | public string QualityVariableName { get; set; }
|
---|
43 | #endregion
|
---|
44 |
|
---|
45 | [StorableConstructor]
|
---|
46 | protected SolutionSimilarityCalculator(bool deserializing) : base(deserializing) { }
|
---|
47 |
|
---|
48 | protected SolutionSimilarityCalculator(SolutionSimilarityCalculator original, Cloner cloner)
|
---|
49 | : base(original, cloner) {
|
---|
50 | this.SolutionVariableName = original.SolutionVariableName;
|
---|
51 | this.QualityVariableName = original.QualityVariableName;
|
---|
52 | }
|
---|
53 | protected SolutionSimilarityCalculator() : base() { }
|
---|
54 |
|
---|
55 | public double[][] CalculateSolutionCrowdSimilarity(IScope leftSolutionCrowd, IScope rightSolutionCrowd) {
|
---|
56 | if (leftSolutionCrowd == null || rightSolutionCrowd == null)
|
---|
57 | throw new ArgumentException("Cannot calculate similarity because one of the provided crowds or both are null.");
|
---|
58 |
|
---|
59 | var leftIndividuals = leftSolutionCrowd.SubScopes;
|
---|
60 | var rightIndividuals = rightSolutionCrowd.SubScopes;
|
---|
61 |
|
---|
62 | if (!leftIndividuals.Any() || !rightIndividuals.Any())
|
---|
63 | throw new ArgumentException("Cannot calculate similarity because one of the provided crowds or both are empty.");
|
---|
64 |
|
---|
65 | var similarityMatrix = new double[leftIndividuals.Count][];
|
---|
66 | for (int i = 0; i < leftIndividuals.Count; i++) {
|
---|
67 | similarityMatrix[i] = new double[rightIndividuals.Count];
|
---|
68 | for (int j = 0; j < rightIndividuals.Count; j++) {
|
---|
69 | similarityMatrix[i][j] = CalculateSolutionSimilarity(leftIndividuals[i], rightIndividuals[j]);
|
---|
70 | }
|
---|
71 | }
|
---|
72 |
|
---|
73 | return similarityMatrix;
|
---|
74 | }
|
---|
75 |
|
---|
76 | public double[][] CalculateSolutionCrowdSimilarity(IScope solutionCrowd) {
|
---|
77 | if (solutionCrowd == null)
|
---|
78 | throw new ArgumentException("Cannot calculate similarity because the provided crowd is null.");
|
---|
79 |
|
---|
80 | var individuals = solutionCrowd.SubScopes;
|
---|
81 |
|
---|
82 | if (!individuals.Any())
|
---|
83 | throw new ArgumentException("Cannot calculate similarity because the provided crowd is empty.");
|
---|
84 |
|
---|
85 | var similarityMatrix = new double[individuals.Count][];
|
---|
86 | for (int i = 0; i < individuals.Count; i++) similarityMatrix[i] = new double[individuals.Count];
|
---|
87 |
|
---|
88 | if (IsCommutative) {
|
---|
89 | for (int i = 0; i < individuals.Count; i++) {
|
---|
90 | for (int j = i; j < individuals.Count; j++) {
|
---|
91 | similarityMatrix[i][j] = similarityMatrix[j][i] = CalculateSolutionSimilarity(individuals[i], individuals[j]);
|
---|
92 | }
|
---|
93 | }
|
---|
94 | } else {
|
---|
95 | for (int i = 0; i < individuals.Count; i++) {
|
---|
96 | for (int j = i; j < individuals.Count; j++) {
|
---|
97 | similarityMatrix[i][j] = CalculateSolutionSimilarity(individuals[i], individuals[j]);
|
---|
98 | if (i == j) continue;
|
---|
99 | similarityMatrix[j][i] = CalculateSolutionSimilarity(individuals[j], individuals[i]);
|
---|
100 | }
|
---|
101 | }
|
---|
102 | }
|
---|
103 |
|
---|
104 | return similarityMatrix;
|
---|
105 | }
|
---|
106 |
|
---|
107 | public abstract double CalculateSolutionSimilarity(IScope leftSolution, IScope rightSolution);
|
---|
108 |
|
---|
109 | public virtual bool Equals(IScope x, IScope y) {
|
---|
110 | if (ReferenceEquals(x, y)) return true;
|
---|
111 | if (x == null || y == null) return false;
|
---|
112 |
|
---|
113 | var q1 = x.Variables[QualityVariableName].Value;
|
---|
114 | var q2 = y.Variables[QualityVariableName].Value;
|
---|
115 |
|
---|
116 | return CheckQualityEquality(q1, q2) && CalculateSolutionSimilarity(x, y).IsAlmost(1.0);
|
---|
117 | }
|
---|
118 |
|
---|
119 | public virtual int GetHashCode(IScope scope) {
|
---|
120 | var quality = scope.Variables[QualityVariableName].Value;
|
---|
121 | var dv = quality as DoubleValue;
|
---|
122 | if (dv != null)
|
---|
123 | return dv.Value.GetHashCode();
|
---|
124 |
|
---|
125 | var da = quality as DoubleArray;
|
---|
126 | if (da != null) {
|
---|
127 | int hash = 17;
|
---|
128 | unchecked {
|
---|
129 | for (int i = 0; i < da.Length; ++i) {
|
---|
130 | hash += hash * 23 + da[i].GetHashCode();
|
---|
131 | }
|
---|
132 | return hash;
|
---|
133 | }
|
---|
134 | }
|
---|
135 | return 0;
|
---|
136 | }
|
---|
137 |
|
---|
138 | private static bool CheckQualityEquality(IItem q1, IItem q2) {
|
---|
139 | var d1 = q1 as DoubleValue;
|
---|
140 | var d2 = q2 as DoubleValue;
|
---|
141 |
|
---|
142 | if (d1 != null && d2 != null)
|
---|
143 | return d1.Value.IsAlmost(d2.Value);
|
---|
144 |
|
---|
145 | var da1 = q1 as DoubleArray;
|
---|
146 | var da2 = q2 as DoubleArray;
|
---|
147 |
|
---|
148 | if (da1 != null && da2 != null)
|
---|
149 | return !da1.Zip(da2, Tuple.Create).Any(x => !x.Item1.IsAlmost(x.Item2));
|
---|
150 |
|
---|
151 | throw new ArgumentException("Could not determine quality equality.");
|
---|
152 | }
|
---|
153 | }
|
---|
154 | }
|
---|