Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Modeling/3.2/VariableEvaluationImpactCalculator.cs @ 2321

Last change on this file since 2321 was 2319, checked in by gkronber, 15 years ago

Applied patch from mkommend for variable impact calculators and adapted data-modeling algorithms to use the new operators for variable impact calculation. #728

File size: 5.7 KB
RevLine 
[2041]1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Text;
25using System.Xml;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.DataAnalysis;
29using System.Linq;
30
31namespace HeuristicLab.Modeling {
[2319]32  public class VariableEvaluationImpactCalculator : OperatorBase {
33
34    public VariableEvaluationImpactCalculator()
35      : base() {
36      AddVariableInfo(new VariableInfo("Predictor", "The predictor used to evaluate the model", typeof(IPredictor), VariableKind.In));
37      AddVariableInfo(new VariableInfo("Dataset", "Dataset", typeof(Dataset), VariableKind.In));
38      AddVariableInfo(new VariableInfo("TargetVariable", "TargetVariable", typeof(IntData), VariableKind.In));
39      AddVariableInfo(new VariableInfo("InputVariableNames", "Names of used variables in the model (optional)", typeof(ItemList<StringData>), VariableKind.In));
40      AddVariableInfo(new VariableInfo("SamplesStart", "SamplesStart", typeof(IntData), VariableKind.In));
41      AddVariableInfo(new VariableInfo("SamplesEnd", "SamplesEnd", typeof(IntData), VariableKind.In));
42      AddVariableInfo(new VariableInfo("VariableEvaluationImpacts", "VariableEvaluationImpacts", typeof(ItemList), VariableKind.New));
[2041]43    }
44
45    public override string Description {
46      get { return @"Calculates the impact of all allowed input variables on the model outputs using evaluator supplied as suboperator."; }
47    }
48
[2319]49    public override IOperation Apply(IScope scope) {
50      IPredictor predictor = GetVariableValue<IPredictor>("Predictor", scope, true);
51      Dataset dataset = GetVariableValue<Dataset>("Dataset", scope, true);
52      int targetVariable = GetVariableValue<IntData>("TargetVariable", scope, true).Data;
53      string targetVariableName = dataset.GetVariableName(targetVariable);
54      ItemList<StringData> inputVariableNames = GetVariableValue<ItemList<StringData>>("InputVariableNames", scope, true, false);
55      int start = GetVariableValue<IntData>("SamplesStart", scope, true).Data;
56      int end = GetVariableValue<IntData>("SamplesEnd", scope, true).Data;
57
58      Dictionary<string, double> evaluationImpacts;
59      if (inputVariableNames == null)
60        evaluationImpacts = Calculate(dataset, predictor, targetVariableName, start, end);
61      else
62        evaluationImpacts = Calculate(dataset, predictor, targetVariableName, inputVariableNames.Select(iv => iv.Data), start, end);
63
64      ItemList variableImpacts = new ItemList();
65      foreach (KeyValuePair<string, double> p in evaluationImpacts) {
66        if (p.Key != targetVariableName) {
67          ItemList row = new ItemList();
68          row.Add(new StringData(p.Key));
69          row.Add(new DoubleData(p.Value));
70          variableImpacts.Add(row);
71        }
[2041]72      }
73
[2319]74      scope.AddVariable(new Variable(scope.TranslateName("VariableEvaluationImpacts"), variableImpacts));
75      return null;
76
[2041]77    }
78
[2319]79    public static Dictionary<string, double> Calculate(Dataset dataset, IPredictor predictor, string targetVariableName, int start, int end) {
80      return Calculate(dataset, predictor, targetVariableName, null, start, end);
[2041]81    }
82
[2319]83
84    public static Dictionary<string, double> Calculate(Dataset dataset, IPredictor predictor, string targetVariableName, IEnumerable<string> inputVariableNames, int start, int end) {
85      Dictionary<string, double> evaluationImpacts = new Dictionary<string, double>();
86      Dataset dirtyDataset = (Dataset)dataset.Clone();
87      double[] referenceValues = predictor.Predict(dataset, start, end);
88
89      double mean;
90      IEnumerable<double> oldValues;
91      double[] newValues;
92      IEnumerable<string> variables;
93      if (inputVariableNames != null)
94        variables = inputVariableNames;
95      else
96        variables = dataset.VariableNames;
97
98      foreach (string variableName in variables) {
99        if (variableName != targetVariableName) {
100          mean = dataset.GetMean(variableName, start, end);
101          oldValues = dirtyDataset.ReplaceVariableValues(variableName, Enumerable.Repeat(mean, end - start), start, end);
102          newValues = predictor.Predict(dirtyDataset, start, end);
103          evaluationImpacts[variableName] = CalculateMSE(referenceValues, newValues);
104          dirtyDataset.ReplaceVariableValues(variableName, oldValues, start, end);
105        }
[2041]106      }
[2319]107
108      double impactsSum = evaluationImpacts.Values.Sum();
109      if (impactsSum.IsAlmost(0.0)) impactsSum = 1.0;
110      foreach (KeyValuePair<string, double> p in evaluationImpacts.ToList())
111        evaluationImpacts[p.Key] = p.Value / impactsSum;
112
113      return evaluationImpacts;
[2041]114    }
115
[2319]116    private static double CalculateMSE(double[] referenceValues, double[] newValues) {
117      try {
118        return SimpleMSEEvaluator.Calculate(MatrixCreator<double>.CreateMatrix(referenceValues, newValues));
119      }
120      catch (ArgumentException) {
121        return double.PositiveInfinity;
122      }
[2136]123    }
[2041]124  }
125}
Note: See TracBrowser for help on using the repository browser.