Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Modeling/3.2/SimpleVarianceAccountedForEvaluator.cs @ 3190

Last change on this file since 3190 was 2357, checked in by gkronber, 15 years ago

Fixed #740 (SimpleEvaluators in HL.GP.StructId and HL.SVM are not compatible with evaluators in HL.Modeling).

File size: 2.8 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using System.Text;
26using HeuristicLab.Core;
27using HeuristicLab.Common;
28using HeuristicLab.Data;
29using HeuristicLab.DataAnalysis;
30
31namespace HeuristicLab.Modeling {
32  /// <summary>
33  /// The Variance Accounted For (VAF) function calculates is computed as
34  /// VAF(y,y') = ( 1 - var(y-y')/var(y) )
35  /// where y' denotes the predicted / modelled values for y and var(x) the variance of a signal x.
36  /// </summary>
37  public class SimpleVarianceAccountedForEvaluator : SimpleEvaluatorBase {
38
39    public override string OutputVariableName {
40      get {
41        return "VAF";
42      }
43    }
44
45    public override double Evaluate(double[,] values) {
46      try {
47        return Calculate(values);
48      }
49      catch (ArgumentException) {
50        return double.NegativeInfinity;
51      }
52    }
53
54    public static double Calculate(double[,] values) {
55      int n = values.GetLength(0);
56      double[] errors = new double[n];
57      double[] originalTargetVariableValues = new double[n];
58      for (int i = 0; i < n; i++) {
59        double estimated = values[i, ESTIMATION_INDEX];
60        double original = values[i, ORIGINAL_INDEX];
61        if (!double.IsNaN(estimated) && !double.IsInfinity(estimated) &&
62          !double.IsNaN(original) && !double.IsInfinity(original)) {
63          errors[i] = original - estimated;
64          originalTargetVariableValues[i] = original;
65        } else {
66          errors[i] = double.NaN;
67          originalTargetVariableValues[i] = double.NaN;
68        }
69      }
70      double errorsVariance = Statistics.Variance(errors);
71      double originalsVariance = Statistics.Variance(originalTargetVariableValues);
72      if (originalsVariance.IsAlmost(0.0))
73        if (errorsVariance.IsAlmost(0.0)) {
74          return 1.0;
75        } else {
76          throw new ArgumentException("Variance of original values is zero");
77        } else {
78        return 1.0 - errorsVariance / originalsVariance;
79      }
80    }
81  }
82}
Note: See TracBrowser for help on using the repository browser.