Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Modeling/3.2/SimpleVarianceAccountedForEvaluator.cs @ 2215

Last change on this file since 2215 was 2136, checked in by gkronber, 16 years ago

Improved handling of exceptional cases in data-based modeling evaluators. #688 (SimpleEvaluators should handle exceptional cases more gracefully)

File size: 2.8 KB
RevLine 
[1888]1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using System.Text;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.DataAnalysis;
29
30namespace HeuristicLab.Modeling {
31  /// <summary>
32  /// The Variance Accounted For (VAF) function calculates is computed as
33  /// VAF(y,y') = ( 1 - var(y-y')/var(y) )
34  /// where y' denotes the predicted / modelled values for y and var(x) the variance of a signal x.
35  /// </summary>
36  public class SimpleVarianceAccountedForEvaluator : SimpleEvaluatorBase {
37
38    public override string OutputVariableName {
39      get {
40        return "VAF";
41      }
42    }
43
44    public override double Evaluate(double[,] values) {
[2136]45      try {
46        return Calculate(values);
47      }
48      catch (ArgumentException) {
49        return double.NegativeInfinity;
50      }
[1888]51    }
52
53    public static double Calculate(double[,] values) {
54      int n = values.GetLength(0);
55      double[] errors = new double[n];
56      double[] originalTargetVariableValues = new double[n];
57      for (int i = 0; i < n; i++) {
58        double estimated = values[i, 0];
59        double original = values[i, 1];
60        if (!double.IsNaN(estimated) && !double.IsInfinity(estimated) &&
61          !double.IsNaN(original) && !double.IsInfinity(original)) {
62          errors[i] = original - estimated;
63          originalTargetVariableValues[i] = original;
64        } else {
65          errors[i] = double.NaN;
66          originalTargetVariableValues[i] = double.NaN;
67        }
68      }
69      double errorsVariance = Statistics.Variance(errors);
70      double originalsVariance = Statistics.Variance(originalTargetVariableValues);
[2136]71      if (IsAlmost(originalsVariance, 0.0))
72        if (IsAlmost(errorsVariance, 0.0)) {
73          return 1.0;
74        } else {
75          throw new ArgumentException("Variance of original values is zero");
76        } else {
77        return 1.0 - errorsVariance / originalsVariance;
78      }
[1888]79    }
80  }
81}
Note: See TracBrowser for help on using the repository browser.