1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using HeuristicLab.Core;
|
---|
24 | using HeuristicLab.Data;
|
---|
25 | using HeuristicLab.DataAnalysis;
|
---|
26 | using System.Linq;
|
---|
27 | using HeuristicLab.Common;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.Modeling {
|
---|
30 | public class SimpleAccuracyEvaluator : SimpleEvaluatorBase {
|
---|
31 | public override string OutputVariableName {
|
---|
32 | get {
|
---|
33 | return "Accuracy";
|
---|
34 | }
|
---|
35 | }
|
---|
36 | public override string Description {
|
---|
37 | get {
|
---|
38 | return @"Calculates the total accuracy of the model (ratio of correctly classified instances to total number of instances) given a model and the list of possible target class values.";
|
---|
39 | }
|
---|
40 | }
|
---|
41 |
|
---|
42 | public override double Evaluate(double[,] values) {
|
---|
43 | return Calculate(values);
|
---|
44 | }
|
---|
45 |
|
---|
46 | public static double Calculate(double[,] values) {
|
---|
47 | int nSamples = values.GetLength(0);
|
---|
48 | int nCorrect = 0;
|
---|
49 | double[] classes = CalculateTargetClasses(values);
|
---|
50 | double[] thresholds = CalculateThresholds(classes);
|
---|
51 |
|
---|
52 | for (int sample = 0; sample < nSamples; sample++) {
|
---|
53 | double est = values[sample, ESTIMATION_INDEX];
|
---|
54 | double origClass = values[sample, ORIGINAL_INDEX];
|
---|
55 | double estClass = double.NaN;
|
---|
56 | // if estimation is lower than the smallest threshold value -> estimated class is the lower class
|
---|
57 | if (est < thresholds[0]) estClass = classes[0];
|
---|
58 | // if estimation is larger (or equal) than the largest threshold value -> estimated class is the upper class
|
---|
59 | else if (est >= thresholds[thresholds.Length - 1]) estClass = classes[classes.Length - 1];
|
---|
60 | else {
|
---|
61 | // otherwise the estimated class is the class which upper threshold is larger than the estimated value
|
---|
62 | for (int k = 0; k < thresholds.Length; k++) {
|
---|
63 | if (thresholds[k] > est) {
|
---|
64 | estClass = classes[k];
|
---|
65 | break;
|
---|
66 | }
|
---|
67 | }
|
---|
68 | }
|
---|
69 | if (estClass.IsAlmost(origClass)) nCorrect++;
|
---|
70 | }
|
---|
71 | return nCorrect / (double)nSamples;
|
---|
72 | }
|
---|
73 |
|
---|
74 | public static double[] CalculateTargetClasses(double[,] values) {
|
---|
75 | int n = values.GetLength(0);
|
---|
76 | double[] original = new double[n];
|
---|
77 | for (int i = 0; i < n; i++) original[i] = values[i, ORIGINAL_INDEX];
|
---|
78 | return original.OrderBy(x => x).Distinct().ToArray();
|
---|
79 | }
|
---|
80 |
|
---|
81 | public static double[] CalculateThresholds(double[] targetClasses) {
|
---|
82 | double[] thresholds = new double[targetClasses.Length - 1];
|
---|
83 | for (int i = 1; i < targetClasses.Length; i++) {
|
---|
84 | thresholds[i - 1] = (targetClasses[i - 1] + targetClasses[i]) / 2.0;
|
---|
85 | }
|
---|
86 | return thresholds;
|
---|
87 | }
|
---|
88 | }
|
---|
89 | }
|
---|