[645] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Text;
|
---|
| 25 | using System.Xml;
|
---|
[1856] | 26 | using HeuristicLab.Core;
|
---|
[645] | 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.DataAnalysis;
|
---|
[2162] | 29 | using System.Linq;
|
---|
[645] | 30 |
|
---|
[1856] | 31 | namespace HeuristicLab.Modeling {
|
---|
| 32 | public class ProblemInjector : OperatorBase {
|
---|
[645] | 33 | public override string Description {
|
---|
[1856] | 34 | get { return @"Injects the necessary variables for a data-based modeling problem."; }
|
---|
[645] | 35 | }
|
---|
| 36 |
|
---|
[1252] | 37 | public ProblemInjector()
|
---|
[645] | 38 | : base() {
|
---|
[1856] | 39 | AddVariableInfo(new VariableInfo("Dataset", "Dataset", typeof(Dataset), VariableKind.New));
|
---|
[645] | 40 | GetVariableInfo("Dataset").Local = true;
|
---|
[1856] | 41 | AddVariable(new Variable("Dataset", new Dataset()));
|
---|
[645] | 42 |
|
---|
[2440] | 43 | AddVariableInfo(new VariableInfo("TargetVariable", "TargetVariable", typeof(StringData), VariableKind.New));
|
---|
[645] | 44 | GetVariableInfo("TargetVariable").Local = true;
|
---|
[2440] | 45 | AddVariable(new Variable("TargetVariable", new StringData()));
|
---|
[645] | 46 |
|
---|
[2440] | 47 | AddVariableInfo(new VariableInfo("AllowedFeatures", "Indexes of allowed input variables", typeof(ItemList<StringData>), VariableKind.In));
|
---|
[645] | 48 | GetVariableInfo("AllowedFeatures").Local = true;
|
---|
[2440] | 49 | AddVariable(new Variable("AllowedFeatures", new ItemList<StringData>()));
|
---|
[645] | 50 |
|
---|
[1856] | 51 | AddVariableInfo(new VariableInfo("TrainingSamplesStart", "TrainingSamplesStart", typeof(IntData), VariableKind.New));
|
---|
[645] | 52 | GetVariableInfo("TrainingSamplesStart").Local = true;
|
---|
[1856] | 53 | AddVariable(new Variable("TrainingSamplesStart", new IntData()));
|
---|
[645] | 54 |
|
---|
[1856] | 55 | AddVariableInfo(new VariableInfo("TrainingSamplesEnd", "TrainingSamplesEnd", typeof(IntData), VariableKind.New));
|
---|
[645] | 56 | GetVariableInfo("TrainingSamplesEnd").Local = true;
|
---|
[1856] | 57 | AddVariable(new Variable("TrainingSamplesEnd", new IntData()));
|
---|
[645] | 58 |
|
---|
[2161] | 59 | AddVariableInfo(new VariableInfo("ActualTrainingSamplesStart", "ActualTrainingSamplesStart", typeof(IntData), VariableKind.New));
|
---|
| 60 | AddVariableInfo(new VariableInfo("ActualTrainingSamplesEnd", "ActualTrainingSamplesEnd", typeof(IntData), VariableKind.New));
|
---|
| 61 |
|
---|
[1856] | 62 | AddVariableInfo(new VariableInfo("ValidationSamplesStart", "ValidationSamplesStart", typeof(IntData), VariableKind.New));
|
---|
[645] | 63 | GetVariableInfo("ValidationSamplesStart").Local = true;
|
---|
[1856] | 64 | AddVariable(new Variable("ValidationSamplesStart", new IntData()));
|
---|
[645] | 65 |
|
---|
[1856] | 66 | AddVariableInfo(new VariableInfo("ValidationSamplesEnd", "ValidationSamplesEnd", typeof(IntData), VariableKind.New));
|
---|
[645] | 67 | GetVariableInfo("ValidationSamplesEnd").Local = true;
|
---|
[1856] | 68 | AddVariable(new Variable("ValidationSamplesEnd", new IntData()));
|
---|
[645] | 69 |
|
---|
[1856] | 70 | AddVariableInfo(new VariableInfo("TestSamplesStart", "TestSamplesStart", typeof(IntData), VariableKind.New));
|
---|
[645] | 71 | GetVariableInfo("TestSamplesStart").Local = true;
|
---|
[1856] | 72 | AddVariable(new Variable("TestSamplesStart", new IntData()));
|
---|
[645] | 73 |
|
---|
[1856] | 74 | AddVariableInfo(new VariableInfo("TestSamplesEnd", "TestSamplesEnd", typeof(IntData), VariableKind.New));
|
---|
[645] | 75 | GetVariableInfo("TestSamplesEnd").Local = true;
|
---|
[1856] | 76 | AddVariable(new Variable("TestSamplesEnd", new IntData()));
|
---|
[2161] | 77 |
|
---|
| 78 | AddVariableInfo(new VariableInfo("MaxNumberOfTrainingSamples", "Maximal number of training samples to use (optional)", typeof(IntData), VariableKind.In));
|
---|
[2165] | 79 | AddVariableInfo(new VariableInfo("NumberOfInputVariables", "The number of available input variables", typeof(IntData), VariableKind.New));
|
---|
[2174] | 80 | AddVariableInfo(new VariableInfo("InputVariables", "List of input variable names", typeof(ItemList), VariableKind.New));
|
---|
[645] | 81 | }
|
---|
| 82 |
|
---|
[1856] | 83 | public override IView CreateView() {
|
---|
[1252] | 84 | return new ProblemInjectorView(this);
|
---|
[645] | 85 | }
|
---|
| 86 |
|
---|
[1856] | 87 | public override IOperation Apply(IScope scope) {
|
---|
[2161] | 88 | AddVariableToScope("TrainingSamplesStart", scope);
|
---|
| 89 | AddVariableToScope("TrainingSamplesEnd", scope);
|
---|
| 90 | AddVariableToScope("ValidationSamplesStart", scope);
|
---|
| 91 | AddVariableToScope("ValidationSamplesEnd", scope);
|
---|
| 92 | AddVariableToScope("TestSamplesStart", scope);
|
---|
| 93 | AddVariableToScope("TestSamplesEnd", scope);
|
---|
| 94 |
|
---|
[2162] | 95 | Dataset operatorDataset = (Dataset)GetVariable("Dataset").Value;
|
---|
[2440] | 96 | string targetVariable = ((StringData)GetVariable("TargetVariable").Value).Data;
|
---|
| 97 | ItemList<StringData> operatorAllowedFeatures = (ItemList<StringData>)GetVariable("AllowedFeatures").Value;
|
---|
[2162] | 98 |
|
---|
| 99 | Dataset scopeDataset = CreateNewDataset(operatorDataset, targetVariable, operatorAllowedFeatures);
|
---|
[2174] | 100 | ItemList inputVariables = new ItemList();
|
---|
| 101 | for (int i = 1; i < scopeDataset.Columns; i++) {
|
---|
| 102 | inputVariables.Add(new StringData(scopeDataset.GetVariableName(i)));
|
---|
| 103 | }
|
---|
[2162] | 104 |
|
---|
[2174] | 105 | scope.AddVariable(new Variable(scope.TranslateName("Dataset"), scopeDataset));
|
---|
[2440] | 106 | scope.AddVariable(new Variable(scope.TranslateName("TargetVariable"), new StringData(targetVariable)));
|
---|
[2174] | 107 | scope.AddVariable(new Variable(scope.TranslateName("NumberOfInputVariables"), new IntData(scopeDataset.Columns - 1)));
|
---|
| 108 | scope.AddVariable(new Variable(scope.TranslateName("InputVariables"), inputVariables));
|
---|
[2162] | 109 |
|
---|
[2855] | 110 | int trainingStart = ((IntData)GetVariable("TrainingSamplesStart").Value).Data;
|
---|
| 111 | int trainingEnd = ((IntData)GetVariable("TrainingSamplesEnd").Value).Data;
|
---|
[2161] | 112 |
|
---|
| 113 | var maxTraining = GetVariableValue<IntData>("MaxNumberOfTrainingSamples", scope, true, false);
|
---|
| 114 | int nTrainingSamples;
|
---|
| 115 | if (maxTraining != null) {
|
---|
| 116 | nTrainingSamples = Math.Min(maxTraining.Data, trainingEnd - trainingStart);
|
---|
| 117 | if (nTrainingSamples <= 0)
|
---|
| 118 | throw new ArgumentException("Maximal number of training samples must be larger than 0", "MaxNumberOfTrainingSamples");
|
---|
| 119 | } else {
|
---|
| 120 | nTrainingSamples = trainingEnd - trainingStart;
|
---|
[645] | 121 | }
|
---|
[2161] | 122 | scope.AddVariable(new Variable(scope.TranslateName("ActualTrainingSamplesStart"), new IntData(trainingStart)));
|
---|
| 123 | scope.AddVariable(new Variable(scope.TranslateName("ActualTrainingSamplesEnd"), new IntData(trainingStart + nTrainingSamples)));
|
---|
[2174] | 124 |
|
---|
| 125 |
|
---|
[645] | 126 | return null;
|
---|
| 127 | }
|
---|
[2161] | 128 |
|
---|
[2440] | 129 | private Dataset CreateNewDataset(Dataset operatorDataset, string targetVariable, ItemList<StringData> operatorAllowedVariables) {
|
---|
| 130 | int columns = (operatorAllowedVariables.Count() + 1);
|
---|
| 131 | int rows = operatorDataset.Rows;
|
---|
| 132 | double[] values = new double[rows * columns];
|
---|
| 133 | int targetVariableIndex = operatorDataset.GetVariableIndex(targetVariable);
|
---|
| 134 | for (int row = 0; row < rows; row++) {
|
---|
| 135 | int column = 0;
|
---|
[2855] | 136 | values[row * columns + column] = operatorDataset.GetValue(row, targetVariableIndex); // set target variable value to column index 0
|
---|
[2440] | 137 | column++; // start input variables at column index 1
|
---|
| 138 | foreach (var inputVariable in operatorAllowedVariables) {
|
---|
| 139 | int variableColumnIndex = operatorDataset.GetVariableIndex(inputVariable.Data);
|
---|
| 140 | values[row * columns + column] = operatorDataset.GetValue(row, variableColumnIndex);
|
---|
| 141 | column++;
|
---|
[2162] | 142 | }
|
---|
| 143 | }
|
---|
| 144 |
|
---|
| 145 | Dataset ds = new Dataset();
|
---|
| 146 | ds.Columns = columns;
|
---|
| 147 | ds.Rows = operatorDataset.Rows;
|
---|
| 148 | ds.Name = operatorDataset.Name;
|
---|
| 149 | ds.Samples = values;
|
---|
| 150 | double[] scalingFactor = new double[columns];
|
---|
| 151 | double[] scalingOffset = new double[columns];
|
---|
[2440] | 152 | ds.SetVariableName(0, targetVariable);
|
---|
| 153 | scalingFactor[0] = operatorDataset.ScalingFactor[targetVariableIndex];
|
---|
| 154 | scalingOffset[0] = operatorDataset.ScalingOffset[targetVariableIndex];
|
---|
[2162] | 155 | for (int column = 1; column < columns; column++) {
|
---|
[2440] | 156 | int variableColumnIndex = operatorDataset.GetVariableIndex(operatorAllowedVariables[column - 1].Data);
|
---|
| 157 | ds.SetVariableName(column, operatorAllowedVariables[column - 1].Data);
|
---|
| 158 | scalingFactor[column] = operatorDataset.ScalingFactor[variableColumnIndex];
|
---|
| 159 | scalingOffset[column] = operatorDataset.ScalingOffset[variableColumnIndex];
|
---|
[2162] | 160 | }
|
---|
| 161 | ds.ScalingOffset = scalingOffset;
|
---|
| 162 | ds.ScalingFactor = scalingFactor;
|
---|
| 163 | return ds;
|
---|
| 164 | }
|
---|
| 165 |
|
---|
[2161] | 166 | private void AddVariableToScope(string variableName, IScope scope) {
|
---|
[2855] | 167 | scope.AddVariable(new Variable(scope.TranslateName(variableName), (IItem)GetVariable(variableName).Value.Clone()));
|
---|
[2161] | 168 | }
|
---|
[645] | 169 | }
|
---|
| 170 | }
|
---|