[2383] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using System.Text;
|
---|
[2388] | 26 | using HeuristicLab.Core;
|
---|
[2383] | 27 |
|
---|
| 28 | namespace HeuristicLab.Modeling {
|
---|
| 29 | public abstract class ModelingResultCalculators {
|
---|
[2388] | 30 | private enum DatasetPart { Training, Validation, Test };
|
---|
| 31 |
|
---|
[2386] | 32 | private static readonly Dictionary<ModelingResult, Func<double[,], double>> ClassificationModelingResults;
|
---|
| 33 | private static readonly Dictionary<ModelingResult, Func<double[,], double>> RegressionModelingResults;
|
---|
| 34 | private static readonly Dictionary<ModelingResult, Func<double[,], double>> TimeSeriesPrognosisModelingResults;
|
---|
[2388] | 35 | private static readonly Dictionary<ModelingResult, IOperator> ClassificationModelingResultEvaluators;
|
---|
| 36 | private static readonly Dictionary<ModelingResult, IOperator> RegressionModelingResultEvaluators;
|
---|
| 37 | private static readonly Dictionary<ModelingResult, IOperator> TimeSeriesPrognosisModelingResultEvaluators;
|
---|
[2383] | 38 |
|
---|
[2388] | 39 | private static readonly Dictionary<Type, IEnumerable<ModelingResult>> regressionResults =
|
---|
| 40 | new Dictionary<Type, IEnumerable<ModelingResult>>() {
|
---|
| 41 | { typeof(SimpleMSEEvaluator),
|
---|
| 42 | new ModelingResult[] {
|
---|
| 43 | ModelingResult.TrainingMeanSquaredError,
|
---|
| 44 | ModelingResult.ValidationMeanSquaredError,
|
---|
| 45 | ModelingResult.TestMeanSquaredError
|
---|
| 46 | }},
|
---|
| 47 | { typeof(SimpleNMSEEvaluator),
|
---|
| 48 | new ModelingResult[] {
|
---|
| 49 | ModelingResult.TrainingNormalizedMeanSquaredError,
|
---|
| 50 | ModelingResult.ValidationNormalizedMeanSquaredError,
|
---|
| 51 | ModelingResult.TestNormalizedMeanSquaredError
|
---|
| 52 | }
|
---|
| 53 | },
|
---|
| 54 | { typeof(SimpleR2Evaluator),
|
---|
| 55 | new ModelingResult[] {
|
---|
| 56 | ModelingResult.TrainingCoefficientOfDetermination,
|
---|
| 57 | ModelingResult.ValidationCoefficientOfDetermination,
|
---|
| 58 | ModelingResult.TestCoefficientOfDetermination
|
---|
| 59 | }
|
---|
| 60 | },
|
---|
[2428] | 61 | { typeof(SimplePearsonCorrelationCoefficientEvaluator),
|
---|
| 62 | new ModelingResult[] {
|
---|
[2549] | 63 | ModelingResult.TrainingPearsonCorrelationCoefficient,
|
---|
[2551] | 64 | ModelingResult.TrainingPearsonsCorrelationCoefficient,
|
---|
[2429] | 65 | ModelingResult.ValidationPearsonCorrelationCoefficient,
|
---|
[2428] | 66 | ModelingResult.TestPearsonCorrelationCoefficient
|
---|
| 67 | }
|
---|
| 68 | },
|
---|
[2429] | 69 | { typeof(SimpleStableCorrelationCoefficientEvaluator),
|
---|
| 70 | new ModelingResult[] {
|
---|
[2549] | 71 | ModelingResult.TrainingStablePearsonCorrelationCoefficient,
|
---|
[2551] | 72 | ModelingResult.TrainingStablePearsonsCorrelationCoefficient,
|
---|
[2429] | 73 | ModelingResult.ValidationStablePearsonCorrelationCoefficient,
|
---|
| 74 | ModelingResult.TestStablePearsonCorrelationCoefficient
|
---|
| 75 | }
|
---|
| 76 | },
|
---|
[2428] | 77 | { typeof(SimpleSpearmansRankCorrelationCoefficientEvaluator),
|
---|
| 78 | new ModelingResult[] {
|
---|
| 79 | ModelingResult.TrainingSpearmansRankCorrelationCoefficient,
|
---|
| 80 | ModelingResult.ValidationSpearmansRankCorrelationCoefficient,
|
---|
| 81 | ModelingResult.TestSpearmansRankCorrelationCoefficient
|
---|
| 82 | }
|
---|
| 83 | },
|
---|
[2388] | 84 | { typeof(SimpleVarianceAccountedForEvaluator),
|
---|
| 85 | new ModelingResult[] {
|
---|
| 86 | ModelingResult.TrainingVarianceAccountedFor,
|
---|
| 87 | ModelingResult.ValidationVarianceAccountedFor,
|
---|
| 88 | ModelingResult.TestVarianceAccountedFor
|
---|
| 89 | }
|
---|
| 90 | },
|
---|
| 91 | { typeof(SimpleMeanAbsolutePercentageErrorEvaluator),
|
---|
| 92 | new ModelingResult[] {
|
---|
| 93 | ModelingResult.TrainingMeanAbsolutePercentageError,
|
---|
| 94 | ModelingResult.ValidationMeanAbsolutePercentageError,
|
---|
| 95 | ModelingResult.TestMeanAbsolutePercentageError
|
---|
| 96 | }
|
---|
| 97 | },
|
---|
| 98 | { typeof(SimpleMeanAbsolutePercentageOfRangeErrorEvaluator),
|
---|
| 99 | new ModelingResult[] {
|
---|
| 100 | ModelingResult.TrainingMeanAbsolutePercentageOfRangeError,
|
---|
| 101 | ModelingResult.ValidationMeanAbsolutePercentageOfRangeError,
|
---|
| 102 | ModelingResult.TestMeanAbsolutePercentageOfRangeError
|
---|
| 103 | }
|
---|
| 104 | }
|
---|
| 105 | };
|
---|
| 106 |
|
---|
| 107 | private static readonly Dictionary<Type, IEnumerable<ModelingResult>> timeSeriesResults =
|
---|
| 108 | new Dictionary<Type, IEnumerable<ModelingResult>>() {
|
---|
| 109 | { typeof(SimpleTheilInequalityCoefficientEvaluator),
|
---|
| 110 | new ModelingResult[] {
|
---|
| 111 | ModelingResult.TrainingTheilInequality,
|
---|
| 112 | ModelingResult.ValidationTheilInequality,
|
---|
| 113 | ModelingResult.TestTheilInequality
|
---|
| 114 | }
|
---|
| 115 | },
|
---|
| 116 | { typeof(SimpleDirectionalSymmetryEvaluator),
|
---|
| 117 | new ModelingResult[] {
|
---|
| 118 | ModelingResult.TrainingDirectionalSymmetry,
|
---|
| 119 | ModelingResult.ValidationDirectionalSymmetry,
|
---|
| 120 | ModelingResult.TestDirectionalSymmetry
|
---|
| 121 | }
|
---|
| 122 | },
|
---|
| 123 | { typeof(SimpleWeightedDirectionalSymmetryEvaluator),
|
---|
| 124 | new ModelingResult[] {
|
---|
| 125 | ModelingResult.TrainingWeightedDirectionalSymmetry,
|
---|
| 126 | ModelingResult.ValidationWeightedDirectionalSymmetry,
|
---|
| 127 | ModelingResult.TestWeightedDirectionalSymmetry
|
---|
| 128 | }
|
---|
| 129 | }
|
---|
| 130 | };
|
---|
| 131 |
|
---|
| 132 | private static readonly Dictionary<Type, IEnumerable<ModelingResult>> classificationResults =
|
---|
| 133 | new Dictionary<Type, IEnumerable<ModelingResult>>() {
|
---|
| 134 | { typeof(SimpleAccuracyEvaluator),
|
---|
| 135 | new ModelingResult[] {
|
---|
| 136 | ModelingResult.TrainingAccuracy,
|
---|
| 137 | ModelingResult.ValidationAccuracy,
|
---|
| 138 | ModelingResult.TestAccuracy
|
---|
| 139 | }
|
---|
| 140 | }
|
---|
| 141 | };
|
---|
| 142 |
|
---|
| 143 |
|
---|
[2383] | 144 | static ModelingResultCalculators() {
|
---|
[2386] | 145 | RegressionModelingResults = new Dictionary<ModelingResult, Func<double[,], double>>();
|
---|
[2388] | 146 | ClassificationModelingResults = new Dictionary<ModelingResult, Func<double[,], double>>();
|
---|
| 147 | TimeSeriesPrognosisModelingResults = new Dictionary<ModelingResult, Func<double[,], double>>();
|
---|
[2383] | 148 |
|
---|
| 149 | //Mean squared errors
|
---|
[2386] | 150 | RegressionModelingResults[ModelingResult.TrainingMeanSquaredError] = SimpleMSEEvaluator.Calculate;
|
---|
| 151 | RegressionModelingResults[ModelingResult.ValidationMeanSquaredError] = SimpleMSEEvaluator.Calculate;
|
---|
| 152 | RegressionModelingResults[ModelingResult.TestMeanSquaredError] = SimpleMSEEvaluator.Calculate;
|
---|
[2383] | 153 |
|
---|
| 154 | //Normalized mean squared errors
|
---|
[2386] | 155 | RegressionModelingResults[ModelingResult.TrainingNormalizedMeanSquaredError] = SimpleNMSEEvaluator.Calculate;
|
---|
| 156 | RegressionModelingResults[ModelingResult.ValidationNormalizedMeanSquaredError] = SimpleNMSEEvaluator.Calculate;
|
---|
| 157 | RegressionModelingResults[ModelingResult.TestNormalizedMeanSquaredError] = SimpleNMSEEvaluator.Calculate;
|
---|
[2383] | 158 |
|
---|
| 159 | //Mean absolute percentage error
|
---|
[2386] | 160 | RegressionModelingResults[ModelingResult.TrainingMeanAbsolutePercentageError] = SimpleMeanAbsolutePercentageErrorEvaluator.Calculate;
|
---|
| 161 | RegressionModelingResults[ModelingResult.ValidationMeanAbsolutePercentageError] = SimpleMeanAbsolutePercentageErrorEvaluator.Calculate;
|
---|
| 162 | RegressionModelingResults[ModelingResult.TestMeanAbsolutePercentageError] = SimpleMeanAbsolutePercentageErrorEvaluator.Calculate;
|
---|
[2383] | 163 |
|
---|
| 164 | //Mean absolute percentage of range error
|
---|
[2386] | 165 | RegressionModelingResults[ModelingResult.TrainingMeanAbsolutePercentageOfRangeError] = SimpleMeanAbsolutePercentageOfRangeErrorEvaluator.Calculate;
|
---|
| 166 | RegressionModelingResults[ModelingResult.ValidationMeanAbsolutePercentageOfRangeError] = SimpleMeanAbsolutePercentageOfRangeErrorEvaluator.Calculate;
|
---|
| 167 | RegressionModelingResults[ModelingResult.TestMeanAbsolutePercentageOfRangeError] = SimpleMeanAbsolutePercentageOfRangeErrorEvaluator.Calculate;
|
---|
[2383] | 168 |
|
---|
| 169 | //Coefficient of determination
|
---|
[2386] | 170 | RegressionModelingResults[ModelingResult.TrainingCoefficientOfDetermination] = SimpleR2Evaluator.Calculate;
|
---|
| 171 | RegressionModelingResults[ModelingResult.ValidationCoefficientOfDetermination] = SimpleR2Evaluator.Calculate;
|
---|
| 172 | RegressionModelingResults[ModelingResult.TestCoefficientOfDetermination] = SimpleR2Evaluator.Calculate;
|
---|
[2383] | 173 |
|
---|
[2428] | 174 | //Pearson Correlation Coefficient
|
---|
[2549] | 175 | RegressionModelingResults[ModelingResult.TrainingPearsonCorrelationCoefficient] = SimplePearsonCorrelationCoefficientEvaluator.Calculate;
|
---|
[2551] | 176 | RegressionModelingResults[ModelingResult.TrainingPearsonsCorrelationCoefficient] = SimplePearsonCorrelationCoefficientEvaluator.Calculate;
|
---|
[2428] | 177 | RegressionModelingResults[ModelingResult.ValidationPearsonCorrelationCoefficient] = SimplePearsonCorrelationCoefficientEvaluator.Calculate;
|
---|
| 178 | RegressionModelingResults[ModelingResult.TestPearsonCorrelationCoefficient] = SimplePearsonCorrelationCoefficientEvaluator.Calculate;
|
---|
| 179 |
|
---|
| 180 | //Stable Pearson Correlation Coefficient
|
---|
[2549] | 181 | RegressionModelingResults[ModelingResult.TrainingStablePearsonCorrelationCoefficient] = SimpleStableCorrelationCoefficientEvaluator.Calculate;
|
---|
[2551] | 182 | RegressionModelingResults[ModelingResult.TrainingStablePearsonsCorrelationCoefficient] = SimpleStableCorrelationCoefficientEvaluator.Calculate;
|
---|
[2428] | 183 | RegressionModelingResults[ModelingResult.ValidationStablePearsonCorrelationCoefficient] = SimpleStableCorrelationCoefficientEvaluator.Calculate;
|
---|
| 184 | RegressionModelingResults[ModelingResult.TestStablePearsonCorrelationCoefficient] = SimpleStableCorrelationCoefficientEvaluator.Calculate;
|
---|
| 185 |
|
---|
| 186 | //Spearman's rank correlation coefficient
|
---|
| 187 | RegressionModelingResults[ModelingResult.TrainingSpearmansRankCorrelationCoefficient] = SimpleSpearmansRankCorrelationCoefficientEvaluator.Calculate;
|
---|
| 188 | RegressionModelingResults[ModelingResult.ValidationSpearmansRankCorrelationCoefficient] = SimpleSpearmansRankCorrelationCoefficientEvaluator.Calculate;
|
---|
| 189 | RegressionModelingResults[ModelingResult.TestSpearmansRankCorrelationCoefficient] = SimpleSpearmansRankCorrelationCoefficientEvaluator.Calculate;
|
---|
| 190 |
|
---|
[2383] | 191 | //Variance accounted for
|
---|
[2386] | 192 | RegressionModelingResults[ModelingResult.TrainingVarianceAccountedFor] = SimpleVarianceAccountedForEvaluator.Calculate;
|
---|
| 193 | RegressionModelingResults[ModelingResult.ValidationVarianceAccountedFor] = SimpleVarianceAccountedForEvaluator.Calculate;
|
---|
| 194 | RegressionModelingResults[ModelingResult.TestVarianceAccountedFor] = SimpleVarianceAccountedForEvaluator.Calculate;
|
---|
[2383] | 195 |
|
---|
| 196 | //Accuracy
|
---|
[2386] | 197 | ClassificationModelingResults[ModelingResult.TrainingAccuracy] = SimpleAccuracyEvaluator.Calculate;
|
---|
| 198 | ClassificationModelingResults[ModelingResult.ValidationAccuracy] = SimpleAccuracyEvaluator.Calculate;
|
---|
| 199 | ClassificationModelingResults[ModelingResult.TestAccuracy] = SimpleAccuracyEvaluator.Calculate;
|
---|
[2383] | 200 |
|
---|
| 201 | //Theil inequality
|
---|
[2386] | 202 | TimeSeriesPrognosisModelingResults[ModelingResult.TrainingTheilInequality] = SimpleTheilInequalityCoefficientEvaluator.Calculate;
|
---|
| 203 | TimeSeriesPrognosisModelingResults[ModelingResult.ValidationTheilInequality] = SimpleTheilInequalityCoefficientEvaluator.Calculate;
|
---|
| 204 | TimeSeriesPrognosisModelingResults[ModelingResult.TestTheilInequality] = SimpleTheilInequalityCoefficientEvaluator.Calculate;
|
---|
[2383] | 205 |
|
---|
| 206 | //Directional symmetry
|
---|
[2386] | 207 | TimeSeriesPrognosisModelingResults[ModelingResult.TrainingDirectionalSymmetry] = SimpleDirectionalSymmetryEvaluator.Calculate;
|
---|
| 208 | TimeSeriesPrognosisModelingResults[ModelingResult.ValidationDirectionalSymmetry] = SimpleDirectionalSymmetryEvaluator.Calculate;
|
---|
| 209 | TimeSeriesPrognosisModelingResults[ModelingResult.TestDirectionalSymmetry] = SimpleDirectionalSymmetryEvaluator.Calculate;
|
---|
[2383] | 210 |
|
---|
| 211 | //Weighted directional symmetry
|
---|
[2386] | 212 | TimeSeriesPrognosisModelingResults[ModelingResult.TrainingWeightedDirectionalSymmetry] = SimpleWeightedDirectionalSymmetryEvaluator.Calculate;
|
---|
| 213 | TimeSeriesPrognosisModelingResults[ModelingResult.ValidationWeightedDirectionalSymmetry] = SimpleWeightedDirectionalSymmetryEvaluator.Calculate;
|
---|
| 214 | TimeSeriesPrognosisModelingResults[ModelingResult.TestWeightedDirectionalSymmetry] = SimpleWeightedDirectionalSymmetryEvaluator.Calculate;
|
---|
[2388] | 215 |
|
---|
| 216 | #region result evaluators
|
---|
| 217 |
|
---|
| 218 | RegressionModelingResultEvaluators = new Dictionary<ModelingResult, IOperator>();
|
---|
| 219 | foreach (Type evaluatorT in regressionResults.Keys) {
|
---|
| 220 | foreach (ModelingResult r in regressionResults[evaluatorT]) {
|
---|
| 221 | RegressionModelingResultEvaluators[r] = CreateEvaluator(evaluatorT, r);
|
---|
| 222 | }
|
---|
| 223 | }
|
---|
| 224 |
|
---|
| 225 | timeSeriesResults = CombineDictionaries(regressionResults, timeSeriesResults);
|
---|
| 226 | TimeSeriesPrognosisModelingResultEvaluators = new Dictionary<ModelingResult, IOperator>();
|
---|
| 227 | foreach (Type evaluatorT in timeSeriesResults.Keys) {
|
---|
| 228 | foreach (ModelingResult r in timeSeriesResults[evaluatorT]) {
|
---|
| 229 | TimeSeriesPrognosisModelingResultEvaluators[r] = CreateEvaluator(evaluatorT, r);
|
---|
| 230 | }
|
---|
| 231 | }
|
---|
| 232 |
|
---|
| 233 | classificationResults = CombineDictionaries(regressionResults, classificationResults);
|
---|
| 234 | ClassificationModelingResultEvaluators = new Dictionary<ModelingResult, IOperator>();
|
---|
| 235 | foreach (Type evaluatorT in classificationResults.Keys) {
|
---|
| 236 | foreach (ModelingResult r in classificationResults[evaluatorT]) {
|
---|
| 237 | ClassificationModelingResultEvaluators[r] = CreateEvaluator(evaluatorT, r);
|
---|
| 238 | }
|
---|
| 239 | }
|
---|
| 240 |
|
---|
| 241 | #endregion
|
---|
[2383] | 242 | }
|
---|
[2386] | 243 |
|
---|
| 244 | public static Dictionary<ModelingResult, Func<double[,], double>> GetModelingResult(ModelType modelType) {
|
---|
| 245 | switch (modelType) {
|
---|
| 246 | case ModelType.Regression:
|
---|
[2388] | 247 | return CombineDictionaries(RegressionModelingResults, new Dictionary<ModelingResult, Func<double[,], double>>());
|
---|
[2386] | 248 | case ModelType.Classification:
|
---|
[2388] | 249 | return CombineDictionaries(RegressionModelingResults, ClassificationModelingResults);
|
---|
[2386] | 250 | case ModelType.TimeSeriesPrognosis:
|
---|
[2397] | 251 | return CombineDictionaries(RegressionModelingResults, TimeSeriesPrognosisModelingResults);
|
---|
[2386] | 252 | default:
|
---|
[2388] | 253 | throw new ArgumentException("Modeling result mapping for ModelType " + modelType + " not defined.");
|
---|
[2386] | 254 | }
|
---|
| 255 | }
|
---|
[2387] | 256 |
|
---|
| 257 | public static Func<double[,], double> GetModelingResultCalculator(ModelingResult modelingResult) {
|
---|
| 258 | if (RegressionModelingResults.ContainsKey(modelingResult))
|
---|
| 259 | return RegressionModelingResults[modelingResult];
|
---|
| 260 | else if (ClassificationModelingResults.ContainsKey(modelingResult))
|
---|
| 261 | return ClassificationModelingResults[modelingResult];
|
---|
| 262 | else if (TimeSeriesPrognosisModelingResults.ContainsKey(modelingResult))
|
---|
| 263 | return TimeSeriesPrognosisModelingResults[modelingResult];
|
---|
| 264 | else
|
---|
[2388] | 265 | throw new ArgumentException("Calculator for modeling result " + modelingResult + " not defined.");
|
---|
[2387] | 266 | }
|
---|
[2388] | 267 |
|
---|
| 268 | public static IOperator CreateModelingResultEvaluator(ModelingResult modelingResult) {
|
---|
| 269 | IOperator opTemplate = null;
|
---|
| 270 | if (RegressionModelingResultEvaluators.ContainsKey(modelingResult))
|
---|
| 271 | opTemplate = RegressionModelingResultEvaluators[modelingResult];
|
---|
| 272 | else if (ClassificationModelingResultEvaluators.ContainsKey(modelingResult))
|
---|
| 273 | opTemplate = ClassificationModelingResultEvaluators[modelingResult];
|
---|
| 274 | else if (TimeSeriesPrognosisModelingResultEvaluators.ContainsKey(modelingResult))
|
---|
| 275 | opTemplate = TimeSeriesPrognosisModelingResultEvaluators[modelingResult];
|
---|
| 276 | else
|
---|
| 277 | throw new ArgumentException("Evaluator for modeling result " + modelingResult + " not defined.");
|
---|
| 278 | return (IOperator)opTemplate.Clone();
|
---|
| 279 | }
|
---|
| 280 |
|
---|
| 281 | private static IOperator CreateEvaluator(Type evaluatorType, ModelingResult result) {
|
---|
| 282 | SimpleEvaluatorBase evaluator = (SimpleEvaluatorBase)Activator.CreateInstance(evaluatorType);
|
---|
| 283 | evaluator.GetVariableInfo("Values").ActualName = GetDatasetPart(result) + "Values";
|
---|
| 284 | evaluator.GetVariableInfo(evaluator.OutputVariableName).ActualName = result.ToString();
|
---|
| 285 | return evaluator;
|
---|
| 286 | }
|
---|
| 287 |
|
---|
| 288 | private static DatasetPart GetDatasetPart(ModelingResult result) {
|
---|
| 289 | if (result.ToString().StartsWith("Training")) return DatasetPart.Training;
|
---|
| 290 | else if (result.ToString().StartsWith("Validation")) return DatasetPart.Validation;
|
---|
| 291 | else if (result.ToString().StartsWith("Test")) return DatasetPart.Test;
|
---|
| 292 | else throw new ArgumentException("Can't determine dataset part of modeling result " + result + ".");
|
---|
| 293 | }
|
---|
| 294 |
|
---|
| 295 | private static Dictionary<T1, T2> CombineDictionaries<T1, T2>(
|
---|
| 296 | Dictionary<T1, T2> x,
|
---|
| 297 | Dictionary<T1, T2> y) {
|
---|
| 298 | Dictionary<T1, T2> result = new Dictionary<T1, T2>(x);
|
---|
| 299 | return x.Union(y).ToDictionary<KeyValuePair<T1, T2>, T1, T2>(p => p.Key, p => p.Value);
|
---|
| 300 | }
|
---|
[2383] | 301 | }
|
---|
| 302 | }
|
---|