[1906] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Text;
|
---|
| 25 | using HeuristicLab.Core;
|
---|
| 26 | using HeuristicLab.DataAnalysis;
|
---|
| 27 |
|
---|
| 28 | namespace HeuristicLab.Modeling {
|
---|
| 29 | public class Model : IModel {
|
---|
| 30 | #region IModel Members
|
---|
| 31 |
|
---|
| 32 | private Dataset dataset;
|
---|
| 33 | public Dataset Dataset {
|
---|
| 34 | get { return dataset; }
|
---|
| 35 | set { dataset = value; }
|
---|
| 36 | }
|
---|
| 37 |
|
---|
| 38 | private string targetVariable;
|
---|
| 39 | public string TargetVariable {
|
---|
| 40 | get { return targetVariable; }
|
---|
| 41 | set { targetVariable = value; }
|
---|
| 42 | }
|
---|
| 43 |
|
---|
| 44 | private double trainingMSE;
|
---|
| 45 | public double TrainingMeanSquaredError {
|
---|
| 46 | get { return trainingMSE; }
|
---|
| 47 | set { trainingMSE = value; }
|
---|
| 48 | }
|
---|
| 49 |
|
---|
| 50 | private double validationMSE;
|
---|
| 51 | public double ValidationMeanSquaredError {
|
---|
| 52 | get { return validationMSE; }
|
---|
| 53 | set { validationMSE = value; }
|
---|
| 54 | }
|
---|
| 55 |
|
---|
| 56 | private double testMSE;
|
---|
| 57 | public double TestMeanSquaredError {
|
---|
| 58 | get { return testMSE; }
|
---|
| 59 | set { testMSE = value; }
|
---|
| 60 | }
|
---|
| 61 |
|
---|
[1922] | 62 | public double TrainingMeanAbsolutePercentageError {
|
---|
| 63 | get;
|
---|
| 64 | set;
|
---|
| 65 | }
|
---|
| 66 |
|
---|
| 67 | public double ValidationMeanAbsolutePercentageError {
|
---|
| 68 | get;
|
---|
| 69 | set;
|
---|
| 70 | }
|
---|
| 71 |
|
---|
| 72 | public double TestMeanAbsolutePercentageError {
|
---|
| 73 | get;
|
---|
| 74 | set;
|
---|
| 75 | }
|
---|
| 76 |
|
---|
| 77 | public double TrainingMeanAbsolutePercentageOfRangeError {
|
---|
| 78 | get;
|
---|
| 79 | set;
|
---|
| 80 | }
|
---|
| 81 |
|
---|
| 82 | public double ValidationMeanAbsolutePercentageOfRangeError {
|
---|
| 83 | get;
|
---|
| 84 | set;
|
---|
| 85 | }
|
---|
| 86 |
|
---|
| 87 | public double TestMeanAbsolutePercentageOfRangeError {
|
---|
| 88 | get;
|
---|
| 89 | set;
|
---|
| 90 | }
|
---|
| 91 |
|
---|
| 92 | public double TrainingCoefficientOfDetermination {
|
---|
| 93 | get;
|
---|
| 94 | set;
|
---|
| 95 | }
|
---|
| 96 |
|
---|
| 97 | public double ValidationCoefficientOfDetermination {
|
---|
| 98 | get;
|
---|
| 99 | set;
|
---|
| 100 | }
|
---|
| 101 |
|
---|
| 102 | public double TestCoefficientOfDetermination {
|
---|
| 103 | get;
|
---|
| 104 | set;
|
---|
| 105 | }
|
---|
| 106 |
|
---|
| 107 | public double TrainingVarianceAccountedFor {
|
---|
| 108 | get;
|
---|
| 109 | set;
|
---|
| 110 | }
|
---|
| 111 |
|
---|
| 112 | public double ValidationVarianceAccountedFor {
|
---|
| 113 | get;
|
---|
| 114 | set;
|
---|
| 115 | }
|
---|
| 116 |
|
---|
| 117 | public double TestVarianceAccountedFor {
|
---|
| 118 | get;
|
---|
| 119 | set;
|
---|
| 120 | }
|
---|
| 121 |
|
---|
[2034] | 122 | public double GetVariableImpact(string variableName) {
|
---|
| 123 | if (variableImpacts.ContainsKey(variableName)) return variableImpacts[variableName];
|
---|
| 124 | else return 0.0;
|
---|
| 125 | }
|
---|
| 126 |
|
---|
[1906] | 127 | private IItem data;
|
---|
| 128 | public IItem Data {
|
---|
| 129 | get { return data; }
|
---|
| 130 | set { data = value; }
|
---|
| 131 | }
|
---|
| 132 |
|
---|
| 133 | #endregion
|
---|
[2034] | 134 |
|
---|
| 135 | private Dictionary<string, double> variableImpacts = new Dictionary<string, double>();
|
---|
| 136 | public void SetVariableImpact(string variableName, double impact) {
|
---|
| 137 | variableImpacts[variableName] = impact;
|
---|
| 138 | }
|
---|
| 139 |
|
---|
| 140 | public void SetVariableImpact(int variableIndex, double impact) {
|
---|
| 141 | variableImpacts[dataset.GetVariableName(variableIndex)] = impact;
|
---|
| 142 | }
|
---|
[1906] | 143 | }
|
---|
| 144 | }
|
---|