1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using HeuristicLab.Core;
|
---|
23 | using HeuristicLab.DataAnalysis;
|
---|
24 | using HeuristicLab.Operators;
|
---|
25 | using HeuristicLab.Modeling;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using System.Linq;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.Modeling {
|
---|
30 | public static class DefaultModelAnalyzerOperators {
|
---|
31 | public static IOperator CreatePostProcessingOperator(ModelType modelType) {
|
---|
32 | CombinedOperator op = new CombinedOperator();
|
---|
33 | op.Name = modelType + " model analyser";
|
---|
34 | SequentialProcessor seq = new SequentialProcessor();
|
---|
35 | var modelingResults = ModelingResultCalculators.GetModelingResult(modelType);
|
---|
36 | foreach (var r in modelingResults.Keys) {
|
---|
37 | seq.AddSubOperator(ModelingResultCalculators.CreateModelingResultEvaluator(r));
|
---|
38 | }
|
---|
39 |
|
---|
40 | op.OperatorGraph.AddOperator(seq);
|
---|
41 | op.OperatorGraph.InitialOperator = seq;
|
---|
42 | return op;
|
---|
43 | }
|
---|
44 |
|
---|
45 | public static IAnalyzerModel PopulateAnalyzerModel(IScope modelScope, IAnalyzerModel model, ModelType modelType) {
|
---|
46 | model.Predictor = modelScope.GetVariableValue<IPredictor>("Predictor", false);
|
---|
47 | Dataset ds = modelScope.GetVariableValue<Dataset>("Dataset", true);
|
---|
48 | model.Dataset = ds;
|
---|
49 | model.TargetVariable = modelScope.GetVariableValue<StringData>("TargetVariable", true).Data;
|
---|
50 | model.Type = ModelType.Regression;
|
---|
51 | model.TrainingSamplesStart = modelScope.GetVariableValue<IntData>("TrainingSamplesStart", true).Data;
|
---|
52 | model.TrainingSamplesEnd = modelScope.GetVariableValue<IntData>("TrainingSamplesEnd", true).Data;
|
---|
53 | model.ValidationSamplesStart = modelScope.GetVariableValue<IntData>("ValidationSamplesStart", true).Data;
|
---|
54 | model.ValidationSamplesEnd = modelScope.GetVariableValue<IntData>("ValidationSamplesEnd", true).Data;
|
---|
55 | model.TestSamplesStart = modelScope.GetVariableValue<IntData>("TestSamplesStart", true).Data;
|
---|
56 | model.TestSamplesEnd = modelScope.GetVariableValue<IntData>("TestSamplesEnd", true).Data;
|
---|
57 |
|
---|
58 | var modelingResults = ModelingResultCalculators.GetModelingResult(modelType);
|
---|
59 | foreach (var r in modelingResults.Keys) {
|
---|
60 | model.ExtractResult(modelScope, r);
|
---|
61 | }
|
---|
62 |
|
---|
63 | model.SetMetaData("NumberOfInputVariables", model.Predictor.GetInputVariables().Count());
|
---|
64 |
|
---|
65 | return model;
|
---|
66 | }
|
---|
67 | }
|
---|
68 | }
|
---|